DISTRIBUTION, ABUNDANCE, AND BIOLOGICAL CHARACTERISTICS OF GROUNDFISH IN THE EASTERN BERING SEA BASED ON RESULTS OF
U.S.-JAPAN BOTTOM TRAWL AND MIDWATER SURVEYS DURING JUNE-SEPTEMBER 1988
by

Richard G. Bakkala, William A. Karp ${ }^{1}$ Gary F. Walters ${ }^{1}$, Takashi Sasaki ${ }^{2}$, Matthew T. Wilson ${ }^{1}$, Terrance M. Sample ${ }^{1}$, Allen M. Shimada', Denise Adams', and Claire E. Armistead ${ }^{1}$

${ }^{1}$ Alaska Fisheries Science Center National Marine Fisheries Service, NOAA
7600 Sand Point Way NE. BIN Cl5700 Building 4
Seattle, WA 98115-0070

${ }^{2}$ National Research Institute of Far Seas Fisheries
$7-1$, Orido 5 Chome
Shimizu, 424 Japan

This document is available to the public through:
National Technical Information Service
U.S. Department of Commerce

5285 Port Royal Road
Springfield, VA 22161

ABSTRACT
The Alaska Fisheries Science Center and the National Research Institute of Far Seas Fisheries of Japan initiated a series of comprehensive triennial surveys of the groundfish and invertebrate resources of the eastern Bering Sea in 1979. The fourth in this series of triennial surveys was carried out from June to September 1988. The primary sampling gear used during these surveys has been bottom trawls, but echo integrationmidwater trawl methods have also been used to assess midwater concentrations of walleye pollock (Theragra chalcogramma). Results of the 1988 triennial survey are presented here in the form of a data report. Methods are described in some detail, but results are mainly presented through tables and figures without a narrative description of findings. Biomass estimates for principal species and species groups of groundfish from the 4 years of triennial surveys are compared and major trends are described.

For results of the 1988 survey, geographic distributions and estimates of relative and absolute abundance for each of the principal species and species groups of groundfish and invertebrates are described. In addition, size composition, and where available, age composition and growth characteristics are presented for principal species. Appendices to the report contain diagrams of the trawl used during the survey and listings of individual station data and results of data analyses.

Species referred to in text portion of this paper.

Common name	Scientific name
Alaska plaice	Pleuronectes quadrituberculatus
Arctic staghorn sculpin	Gymnocanthus tricuspis
Armorhead sculpin	Gymnocanthus galeatus
Arrowtooth flounder	Atheresthes stomias
Bigmouth sculpin	Hemitripterus bolini
Blue king crab	Paralithodes platypus
Butterfly sculpin	Melletes papilio
Grenadier	Macrouridae spp.
Eelpouts	Zoarcidae
Flathead sole	Hippoglossoides elassodon
Greenland turbot	Reinhardtius hippoglossoides
Grenadiers	Macrouridae
Kamchatka flounder	Atheresthes evermanni
Longhead dab	Limanda proboscidea
Longnose lancetfish	Alepisaurus ferox
Longsnout prickleback	Lumpenella longirostris
Marbled eelpout	Lycodes raridens
Pacific cod	Gadus macrocephalus
Pacific halibut	Hippoglossus stenolepis
Pacific herring	Clupea harengus pallasi
Pacific ocean perch	Sebastes alutus
Plain sculpin	Myoxocephalus jaok
Poachers	Agonidae
Rex sole	Glyptocephalus zachirus
Rock sole	Lepidopsetta bilineata
Rougheye rockfish	Sebastes aleutianus
Sablefish	Anoplopoma fimbria
Sculpins	cottidae
Shortfin eelpout	Lycodes brevipes
Shortraker rockfish	Sebastes borealis
Skates	Rajidae
Smelts	Osmeridae
Snailfishes	Cyclopteridae
Snow crab	Chionoecetes opilio
Spinyhead sculpin	Dasycottus setiger
Starry flounder	Platichthys stellatus
Thornyhead rockfish	Sebastolobus spp.
Walleye pollock	Theragra chalcogranma
Wattled eelpout	Lycodes palearis
Yellowfin sole	Limanda aspera
Yellow Irish lord	Hemilepidotus jordani
Yellowtail rockfish	Sebastes flavidus

CONTENTS

Page
Introduction 1
Methods 3
Survey Area and Sampling Design 3
Vessels and Sampling Gear 8
Relative Fishing Powers 14
Species Groupings 18
Data Collection and Station Sampling Procedure 18
Data Analyses 23
Assumptions and Limitations 24
Bottom Trawl Survey 24
Echo Integration-Midwater Trawl Survey 25
Results of 1988 Triennial Survey 27
Station Data 27
Environmental Conditions 27
Species Encountered 30
Overall Abundance of Major Fish and Invertebrate Families 30
Relative Importance of Individual Species of Fish 30
Results of 1988 Studies on Age-O Walleye Pollock 38
Abundance, Distribution, and Size and Age Composition of Principal Species of Fish, Shrimps, Squids, and Octopuses 38
Comparison of Results from the Four Triennial Surveys 40
Citations 168
Appendix A. Schematic Diagrams of Trawls Used During the 1988 U.S. -Japan Eastern Bering Sea Surveys 171
Appendix B. Station Data from the 1988 U.S.-Japan Eastern Bering Sea Surveys 179
Appendix C. Rank Order of Relative Abundance for Fish and Invertebrate Species 197
Appendix D. Abundance and Size Composition Estimates for Principal Species of Fish, Shrimps, Squids, and Octopuses 219
Appendix E. Age-Length Keys for Principal Species of Fish. 317
Appendix F. Population Estimates by Age for Principal Species of Fish 341

INTRODUCTION

The eastern Bering Sea supports one of the most productive groundfish fisheries in the world with annual commercial catches since 1970 ranging from 1.2 to 2.2 million metric tons (t). The Resource Assessment and Conservation Engineering (RACE) Division of the Alaska Fisheries Science Center (AFSC) has conducted annual bottom trawl surveys to monitor the abundance, distribution, and biological condition of eastern Bering Sea demersal fish and crab stocks. The information gathered is used to provide the North Pacific Fishery Management Council with annual fishery-independent estimates of abundance and biological assessments of commercially exploited stocks, to provide distribution and abundance information to commercial fishermen, and to develop a time-series data base contributing to our understanding of the population dynamics and interactions of groundfish species.

The standard sampling area established for these surveys was first sampled in 1975. Annual surveys have been performed since 1979. This area of about $465,000 \mathrm{~km}$ (Fig. 1) encompasses a major portion of the eastern Bering Sea continental shelf and the distributions of the principal species of crab and groundfish that inhabit shelf waters. Every third year, starting in 1979, the AFSC has expanded survey effort to provide an even more comprehensive assessment of eastern Bering Sea groundfish. During the larger triennial surveys, sampling with bottom trawls is extended beyond the standard survey area to the northern continental shelf region including Norton Sound and to waters of the continental slope. In addition, an echo integration-midwater trawl (EIMWT) survey is conducted to assess the midwater portion of the walleye pollock (Theragra chalcogramma) population and, when combined with results from the bottom trawl surveys, to provide an overall assessment of this species.

During June-September 1988, the AFSC completed the fourth in this series of expanded triennial surveys. Results of previous triennial surveys are reported by Bakkala and Wakabayashi (1985), Bakkala et al. (1985) and Walters et al. (1988). The 1988 survey involved four U.S. vessels as well as vessels from the U.S.S.R. and Japan. During previous triennial surveys, the Far Seas Fisheries Research Laboratory of the Fisheries Agency of Japan has cooperated by providing one or two chartered landbased (Hokuten) trawlers to extensively sample continental slope waters; in 1979, these vessels also sampled the continental shelf. Because of other research commitments, the Japanese were unable to provide a vessel for a full-scale survey of the continental slope in 1988. However, they did provide a chartered landbased trawler for a period of 18 days to conduct comparative fishing experiments and to supplement the sampling of the slope by the U.S. survey vessel. Data from the comparative fishing experiment will be used to relate abundance estimates from the

Figure l.--Standard sampling area for the Alaska Fisheries Science Center's annual bottom trawl surveys in the eastern Bering Sea. Shown is the sampling pattern of survey vessels during the 1987 survey. Boxed areas in Subareas 3, 4, and 6 indicate high-density sampling areas.
U.S. vessel in 1988 to those from Japanese vessels that sampled the slope in previous years. The Soviet research vessel Darwin also sampled continental shelf waters from 17 May to 21 June 1988. The Darwin further conducted 18 side-by-side tows with one of the U.S. survey vessels to compare relative fishing powers. Because of the largely independent nature and different timing of the Darwin survey and differences between trawls and methods of handling catches, the U.S. and Soviet survey data were not compatible. The results of the Darwin survey are, therefore, not included in this report.

This report summarizes information from the survey on the abundance, distribution, and biological characteristics of principal groundfish species. Biomass estimates of principal species and species groups of groundfish from the four triennial surveys are also compared. Appendices contain diagrams of trawls used, basic station data, and results of data analyses of the data.

Preliminary results from the 1988 survey for principal species of crabs are reported by Stevens et al. (1988). Results of the studies in Norton Sound will be issued in a future report.

METHODS

Survey Area and Sampling Design
Bottom Trawl Survey
The stratification of the sampling area for analysis of the 1988 survey data was changed from that used for analyzing previous triennial survey data. The previous stratification originated from the sampling scheme used by U.S. and Japanese vessels during the 1979 survey (Bakkala and Wakabayashi 1985). In 1979, there was considerable overlap of sampling on both the continental shelf and slope by U.S. and Japanese vessels. In order to combine the data from all survey vessels, it was necessary to adopt the stratification scheme shown in Figure 2. In addition, at the time of the 1979 cooperative survey, nautical charts in meters were not available for all areas of the eastern Bering Sea, and it was therefore necessary to stratify the survey area by depth in terms of fathoms.

Following the 1979 survey, the AFSC developed a standard survey area on the continental shelf that has been sampled each year since 1979 (Fig. 1). Stratification of this standard survey area is based on depth contours ($<50 \mathrm{~m}, 50-100 \mathrm{~m}, 100-200 \mathrm{~m}$) that correspond to oceanographic domains on the shelf which may more accurately reflect differences in fish distributions and thereby minimize variances of abundance estimates. A lo-year consecutive time series of assessment data now exists for this area which has been used to examine long-term trends in abundance and to assess the current condition of the various principal species of

Figure 2.--Stratification scheme used in analyses of the 1979, 1982, and 1985 U.S.Japan triennial survey data. Shown is the sampling pattern of survey vessels during the 1985 triennial survey.
groundfish for management purposes. Because of the importance of this standard survey area, it has been used as the foundation for a new stratification scheme for the 1988 triennial survey data (Fig. 3). This new stratification facilitates a comparison of the triennial survey data with those from the standard series. Furthermore, it simplifies the supplementation of the standard survey area data with those from the expanded areas sampled during the triennial surveys. The availability of new nautical charts also allowed us to develop new depth stratification in meters on the continental slope to correspond with the units used on the continental shelf.

In the standard survey area on the shelf (subareas 1-6, Fig. 3), a systematic sampling scheme is used based on a 20×20 nautical mile (nmi) grid. Samples of demersal fish and invertebrates are obtained by trawling at or near the center of each grid block. In the Pribilof and St. Matthew Islands regions, however, sampling density is doubled by adding stations at the grid block corners; this is done in order to increase coverage of blue king crab (Paralithodes platypus) stocks present in these areas. In 1988, the survey vessels fished alternate north-south lines of the station grid, proceeding from Bristol Bay westward to the shelf break (Fig. 3). The alternate-line fishing pattern facilitates comparison of fishing powers of the two vessels, while the progression from east to west prevents multiple encounters of species which may be migrating to inshore feeding or spawning grounds (from west to east) during the course of the survey.

The presence of high-density sampling in subareas 3, 4, and 6 necessitated a further division of these subareas into high-density and standard-density strata, resulting in a total of 10 geographic strata for statistical calculations. The overall sampling density in the standard survey area was $1,309 \mathrm{~km}^{2}$ per station (Table 1). However, because of the high-density sampling in subareas 3, 4, and 6, and the irregular boundaries of the survey area, sampling density varied among subareas from 1,123 to $1,436 \mathrm{~km}^{2}$ per station.

In the north shelf region (subareas 7 and 8, Fig. 3), sampling density was reduced to an average of $2,581 \mathrm{~km}^{2}$ per station because of the lower abundance of groundfish in this region than in the standard survey area. Standard density sampling was performed in the southwest portion of subarea 8 to improve sampling of snow crab (Chionoecetes opilio) in these waters; this necessitated the division of this subarea into lowdensity and standard-density strata for statistical calculations.

As noted earlier, the availability of new navigational charts made it possible to restratify the continental slope region in terms of meters. The interval sampled (200-800 m) was divided equally into two depth subdivisions (200-500 m and 500800 m). In addition, the diagonal line separating the shelf

Figure 3.--Station pattern of the U.S. and Japanese vessels during the 1988 bottom trawl survey and stratification used in the analyses of the survey data.

Table 1. --Size of subareas and sampling densities by subarea during the 1988 bottom trawl survey and areas of each strata surveyed during the 1988 midwater survey (see also Figs. 3 and 4).

Subarea	Bottom trawl survey			$\begin{gathered}\text { Midwater survey } \\ \text { area }\end{gathered}$
	$\begin{aligned} & \text { Area } \\ & \left(\mathrm{km}^{2}\right) \end{aligned}$	No. stations successfully	Sampling density	

Eastern Bering Sea Shelf

1	77,871	58	1,343	0
2	41,027	31	1,323	0
3	103,300	75	1,377	67,260
4	107,822	96	1,123	66,475
5	38,792	27	1,436	38,792
6	94,590	67	1,412	94,590

North Shelf

7
72,827
25
2,913
0
8
82,011
35
2,343
7,851

Slope

9	7,785	47	166	7,785
10	5,646	28	202	5,646
11	4,392	31	142	0
12	3,311	27	123	0

Total survey area

639,374
547
1,169
288,399
region into southeast and northwest portions was extended to the slope to create four subareas on the slope (subareas 9-12, Fig. 3).

The number of vessel days available to sample the continental slope region in 1988 was much less than the effort provided by Japanese vessels during previous triennial surveys. In order to representatively sample the slope with this reduced effort, the 1988 station pattern was derived by selecting every other station sampled by the Japanese vessel in 1985. The distribution of the stations on the slope is not systematic such as that on the shelf, but instead station locations were governed by the steepness of the slope and the extent of trawlable bottom. Density of sampling, therefore, varied by subarea from 123 to 202 km^{2} per station (Table 1).

Echo Integration-Midwater Trawl Survey

The 1988 EIMWT survey of midwater walleye pollock was conducted between 17 June and 15 August. The continental shelf and upper slope areas over bottom depths of 90 to 460 m were surveyed by transecting a series of adjacent parallel tracklines with 20 nmi spacing (Fig. 4). Data were collected from approximately 15 m below the surface to within 3 m of the bottom. If pollock sign was present at a transect endpoint, then that transect was extended for several miles past the sign and the next transect was initiated at the same depth. Abundance estimates for pelagic pollock (age 1 and older) were determined for each geographical stratum surveyed (Fig. 4). The areas surveyed in each stratum are indicated in Table 1. Midwater trawl hauls were made throughout the survey to identify echo sign and to provide information on pollock biological characteristics.

Vessels and Sampling Gear
Vessels
The chartered vessels R / V Alaska and the F / V Ocean Hope 3 conducted the bottom trawl survey on the continental shelf. The chartered vessel F/V Pelagos conducted the EIMWT survey. The NOAA vessel Miller Freeman sampled the northern shelf, Norton Sound, and the continental slope. The Japanese chartered vessel Tomi Maru No. 5l, a land-based (Hokuten) trawler, also participated in the bottom trawl survey of the continental slope. Characteristics of these vessels are given in Table 2.

Fishing Gear
Trawl--Characteristics of the trawls used during the survey are given in Table 3 and Appendix A. The 83-112 eastern otter trawl used by all U.S. vessels during the survey on the shelf has

Table 2. --Characteristics of vessels used during the 1988 eastern Bering Sea survey.

Vessel	Nation	Overall length (m)	Gross tonnage (tons)	Shaft horsepower	Survey methods	Survey period	
						start	Finish
Alaska	U.S.	30.5	219	600	Bottom trawl	4 June	6 August ${ }^{\text {a }}$
Ocean Hope 3	U.S.	31.4	192	850	Bottom trawl	4 June	6 August ${ }^{\text {a }}$
Pelagos	U.S.	39.9	186	1700	EIMWT ${ }^{\text {b }}$	17 June	15 August ${ }^{\text {c }}$
Miller Freeman	U.S.	65.5	1515	2150	Bottom trawl	13 August	23 Sept. ${ }^{\text {d }}$
Tomi Maru No. 51	Japan	51.0	279	2600	Bottom trawl	5 sept.	16 Sept.

${ }^{\text {a }}$ The Alaska and Ocean Hope 3 performed gear comparison experiments from 1 Aug. to 6 Aug.
${ }^{\mathrm{b}}$ Echo integration-midwater trawl survey.
${ }^{c}$ Includes time for target calibration and vessel intercalibration.
${ }^{d}$ Includes time for the Norton Sound survey.

```
Table 3.--Trawls used during the }1988\mathrm{ eastern Bering Sea survey. (also see appendix A)
```

Characteristic	$\frac{\frac{\text { Tomi }}{\text { Maru }}}{\text { trawl }} \frac{51}{\text { No. }}$	$\begin{array}{r} 83-112 \\ \text { trawl } \end{array}$	Nor'eastern trawl	Northern Gold trawl	Marinovich trawl
```Horizontal opening while fishing (m)```	35.0	- ${ }^{\text {a }}$	16.23	40-50	$6.10{ }^{\text {b }}$
```Vertical opening while fishing (m)```	3.9	2	6	30-40	4.0
Headrope length (m)	69.0	25.3	27.4	89.6	9.1
```Footrope length (m)```	83.0	34.1	32.0	84.9	9.1
Mesh sizes (mm)					
Wing	180-240	102	127	rope	76
Body	120-150	102	127	1630-76	70-38
Intermediate	90-120	89	89	96-89	${ }^{\text {c }}$
Codend	100	89	89	89	38
Codend liner	- ${ }^{\text {d }}$	32	32	32	3.2
Door (m)					
Length	4.0	2.7	2.1	1.8	1.8
Height	2.6	1.8	1.5	2.7	2.7
Dandyline Length (m)	-	54.9	54.9	82.3	9.1

[^0]been the standard trawl for this survey since 1982. This trawl is believed to be more efficient at fishing for bottom-dwelling species, such as the flatfishes, than trawls used prior to 1982-based on large increases in abundance estimates between 1981 and 1982 (Bakkala et al. 1985). This gear effect will be discussed further in the section dealing with between-year comparisons.

The Nor'eastern bottom trawl used by the NOAA vessel Miller Freeman on the continental slope was essentially the same as that used by the U.S. vessel sampling slope waters during the 1979 triennial survey (Bakkala and Wakabayashi 1985) except that it is now constructed of polyethylene rather than nylon.

The bottom trawl used by the Tomi Maru No. 51 was essentially the same as that used by the Japanese in previous cooperative surveys (Table 3 and Appendix A). A Northern Gold 1200 rope trawl was used aboard the Pelagos for sampling age-l and older walleye pollock in midwater. A Marinovich midwater trawl was used to sample age-0 pollock.

Wins spread measurements--Wing spread measurements for all the bottom trawls were made using acoustic mensuration equipment
(Scanmar'). These measurements were used to derive the area swept by the trawl for calculating abundance estimates. Measurements were made for the majority of the tows aboard the Alaska and Ocean Hope 2 as well as the NOAA vessel Miller Freeman when operating on the north shelf. This was the first triennial survey where measurements were made routinely on almost every tow. During past surveys, measurements were either made for only a small selected sample of tows or values based on previous measurements were used. In the analyses of these earlier survey data, a mean value was used for all tows of a particular vessel in the survey. During 1988, when reliable data was obtained, the mean value for each tow (usually from over 100 readings at l0second intervals) was used to determine the area swept by the net during that tow. For all tows with reliable data the functional relationship between scope (trawl wire paid out) and net-width was also determined (Fig. 5) from which net-width values could be estimated for tows lacking mensuration data.

Net-width data were collected on only eight tows aboard the Tomi Maru No. 51. These measurements indicated a mean value near 35.0 m over all depths sampled on the slope. This value is identical to the value obtained in 1985 (Walters et al. 1988). Because of equipment malfunctions there were no measurements made of the Nor'eastern trawl during the NOAA Vessel Miller Freeman's slope survey. However, measurements were made approximately 3 months later at similar depths during eight tows. There was little variation over depth, and the mean value of 16.23 m determined from these tows was used to calculate area swept

[^1]

Figure 5 .--Relationship between net width and scope (trawl warp paid out) for the three vessels participating in the 1988 demersal trawl survey on the Bering Sea shelf.
during the eastern Bering Sea slope survey. At the depths on the slope where these two vessels worked, it appears that both nets were operating in the asymptotic portion of the relationship between scope and net width where additional wire paid out had no effect on width. Therefore single values were used for all tows.

## Relative Fishing Powers

Relative fishing powers of survey vessels were estimated during the eastern Bering Sea surveys to account for differences in the efficiencies of the vessels at capturing various species; by compensating for these differences abundance estimates are assumed to be improved.

Two methods were used to measure the relative fishing powers of survey vessels during the 1988 survey: alternate-row fishing and side-by-side fishing. The U.S. vessels Alaska and Ocean Hope 2 fished alternate north-south lines of stations throughout the survey area on the shelf (Fig. 6). This has become the preferred method of measuring the fishing powers for the standard annual shelf surveys. It produces a large number of observations over the entire range of all species within the survey area and appears to produce good results without sacrificing vessel time for side-by-side trawling. The relative fishing powers of the two vessels are determined for each species or species group by comparing the distribution of catch per unit effort (CPUE) values obtained by each vessel from sets of stations on alternate lines throughout the survey area. The need for a fishing-power correction factor is assessed for each species by determining whether the distributions of CPUE values from the two vessels were statistically equivalent based on the method of Geisser and Eddy (1979). If the analysis indicates that the CPUE distributions are the same, or if there are insufficient data to test for differences, the vessels were assumed to have equal fishing powers for that species. If the CPUE distributions are statistically different for a given species, the vessel with the higher catch rate is assigned a fishing power of 1.0 , and catch weights and numbers taken by the less efficient vessel were adjusted to those of the more efficient vessel by using the ratio of the mean catch rates from the two vessels. The rationale for this adjustment is based on the assumption that CPUE values of the more efficient vessel provide the best estimate of the true abundance of the species.

Analysis of the alternate-row fishing data (Table 4) revealed that the Alaska was more efficient than the Ocean Hope 2 for almost all species and significantly more efficient for an unusually high number of species relative to results from previous years. Between-vessel fishing power corrections have usually only been required for 1 to 4 species in past years, while in 1988 the analysis indicates that 13 species required fishing power corrections. The consistency of the results for the large majority of species shows that the trawls were


Figure 6. --Stations used to determine relative fishing powers of the Alaska and Ocean Hope 3 on the continental shelf and the NOAA vessel Miller Freeman and Tomi Maru No. 51 on the continental slope during the 1988 survey.

Table 4.--Relative fishing powers of the Alaska and Ocean Hope 3 based on comparision of mean catch rates from fishing alternate rows of stations over the area shown in Figure 6.

Species*	Number of stations at which species was taken ${ }^{\text {b }}$		Mean catch rates$\qquad$		Ratio of catch rates
	Alaska	Ocean Hope 3	Alaska	Ocean Hope 3	Alaska/Ocean Hope 3
Walleye pollock	150	154	165.45	141.85	1.166
Pacific cod	150	145	22.61	18.05	1.253
Pacific herring	51	38	7.67	0.21	35.860
Yellowfin sole	114	107	59.11	32.57	$1.815^{\circ}$
Rock sole	145	136	42.87	25.27	$1.697^{\text {c }}$
Flathead sole	113	116	12.03	10.40	1.157
Alaska plaice	113	106	21.72	9.78	$2.221^{\text {c }}$
Greenland turbot	21	17	0.25	0.22	1.124
Arrowtooth flounder	82	75	7.35	5.03	1.462
Pacific halibut	94	76	2.94	1.57	$1.876^{\circ}$
Starry flounder	15	8	0.19	0.08	$2.416^{\circ}$
Longhead dab	34	24	0.40	0.16	$2.458^{\circ}$
Rex sole	30	22	0.31	0.20	1.537
Bering flounder	38	33	0.37	0.43	0.845
Butter sole	6	2	0.04	0.03	1.098
Gymnocanthus sp.	26	20	0.27	0.06	$4.520^{\circ}$
Yellow Irish lord	28	29	1.01	0.60	1.680
Butterfly sculpin	10	12.	0.39	0.31	1.283
Triglops sp.	20	12	0.03	0.01	3.095
Myoxocephalus sp.	94	91	3.40	2.59	1.316
Spinyhead sculpin	11	13	0.02	0.02	0.995
Bigmouth sculpin	19	19	0.43	0.60	0.713
Icelus sp.	28	35	0.06	0.03	$2.056^{\text {c }}$
Arctic cod	16	11	0.02	0.01	1.860
Saffron cod	6	6	0.04	0.02	1.841
Eulachon	5	8	0.05	0.02	3.202
Capelin	45	41	0.06	0.06	0.859
Marbled eelpout	18	16	0.36	0.14	$2.524^{\text {c }}$
Wattled eelpout	61	56	0.57	0.23	$2.530^{\text {c }}$
Shortfin eelpout	35	29	0.21	0.10	$2.070^{\circ}$
Sturgeon poacher	105	80	0.63	0.36	$1.772^{\text {c }}$
Snailfish	37	38	0.19	0.14	1.326
Skates	91	90	9.25	5.33	$1.736^{\circ}$
octopus	10	11	0.23	0.10	2.326

${ }^{\text {a }}$ For species not listed, observations were lacking or too few for meaningful comparisons. Vessels were assumed to have equal fishing powers for the species not listed.
${ }^{\mathrm{b}}$ A total of $\mathbf{1 5 6}$ stations trawled by the Alaska and Ocean Hope 3 were used in the anal ysis.
${ }^{c}$ The Geisser and Eddy (1979) procedure indicates that the two vessels sampled distinct populations.
operating differently on the two vessels. One major difference was noted in the performance of the trawls. Wing spread on the Alaska trawl averaged almost 2 m less than that of the Ocean Hope 3 trawl based on a large number of observations with Scanmar trawl mensuration systems during the 1988 survey. Because of this large difference in wing-spread measurements, the two trawls were fished in Puget Sound, Washington, during February 1989 and remeasured with different sets of Scanmar gear. Results of these special studies confirmed the measurements obtained during the 1988 survey. It was also discovered that slightly smaller than normal otter doors were inadvertently used by the Alaska during the 1988 survey which may have caused the trawl to fish narrower than usual. Although the wing-spread measurements were shown to be accurate and the narrower trawl width of the Alaska's trawl was accounted for, application of some of the higher fishingpower correction factors appear to produce unreasonable increases in abundance for certain species.. For example, when compared to estimates in 1987, the magnitude of the increases seem high for yellowfin sole (Limanda aspera), rock sole (Lepidopsetta bilineata), and Alaska plaice (Pleuronectes guadrituberculatus) in the standard annual survey area on the shelf as shown below:

Species M	$\frac{\text { biomass }}{1987}$	$\frac{\text { imate }}{1988}$	$\frac{\% \text { confidens }}{1987}$	$\frac{\text { ntervals }}{1988}$
Yellowfin sole	2,469,087	2,853,671	$\begin{aligned} & 2,094,300- \\ & 2,843,900 \end{aligned}$	$\begin{aligned} & 2,393,500- \\ & 3,314,900 \end{aligned}$
Rock sole	1,249,361	1,904,271	$\begin{aligned} & 1,072,800- \\ & 1,425,900 \end{aligned}$	$\begin{aligned} & 1,656,500- \\ & 2,152,000 \end{aligned}$
Alaska plaice	522,470	936,049	$\begin{aligned} & 411,100- \\ & 663,800 \end{aligned}$	$\begin{array}{r} 628,900- \\ 1,243,200 \end{array}$

Nevertheless, the fishing power correction factors were applied, lacking any valid justification for not using them.

No comparative fishing experiments were conducted between the NOAA vessel Miller Freeman, which sampled north shelf waters, and the Alaska and Ocean Hope 3. Therefore, no attempt was made to standardize the abundance data from the Miller Freeman to that of the other U.S. vessels engaged in sampling shelf waters.

Side-by-side fishing experiments were conducted on the continental slope by the Miller Freeman and the Tomi Maru No. 51 to relate the abundance estimates from the Miller Freeman which conducted the slope survey for the first time in 1988, to those of Japanese landbased trawlers that have sampled slope waters during previous triennial surveys. Although 34 paired tows were completed by the two vessels, 12 of these pairs were eliminated
from the analysis because the depth of trawling differed by more than 50 m . However, as mentioned earlier, data from all 34 of the Tomi Maru No 51 tows were used to supplement the Miller Freeman data in the regular analysis of the slope data. The results of the comparative fishing show that the Japanese trawl was more efficient for the larger flatfish, and fishing-power correction factors were required for Greenland turbot
(Reinhardtius hippoglossoides) and Pacific halibut (Hippoglossus stenolepis) (Table 5). However, the application of the fishingpower correction factor for Greenland turbot would imply that the abundance of this species on the slope increased by a factor of 1.65 between 1985 and 1988. Assessments of the Greenland turbot population based on the time series of eastern Bering Sea survey data show that recruitment of juveniles has been extremely low since the early 1980s, and it seems unlikely that the abundance of the older juvenile and adult populations would have increased between 1985 and 1988 (Bakkala 1989). In addition, size composition data clearly shows an absence of juvenile recruitment to the slope since the early 1980s. The application of the fishing-power correction factor derived during the 1988 slope survey was therefore assumed to produce erroneous results and was not used in calculating abundance estimates for this report. The reason for the apparent erroneous fishing power value may be that the number of replications were insufficient or the difficulty of two vessels fishing the same or similar depths on the slope may have produced faulty results. The only other species that was sampled on the slope and required correction for fishing power was the longsnout prickleback (Lumpenella longirostris).

## Species Groupings

Appendix C contains a ranking by relative abundance based on the mean CPUE, of all fish and invertebrates identified during the 1988 bottom trawl survey. Because midwater trawl hauls were directed to sample specific echo sign, the use of CPUE rankings of abundance would be misleading. For these midwater collections, summaries of overall catch composition are provided. The listing in Appendix $C$ may include some species of uncertain identification. In presenting information in the main body of this report, fish species with difficult or uncertain identifications were grouped into broader taxonomic categories as shown in Table 6. In addition, in some of the tables summarizing abundance data for the overall survey, noncommercially important species were grouped by family. In these latter tables, infrequently occurring species were grouped as "other fish."

Data Collection and Station Sampling Procedure
Bottom Trawl Survey
Detailed methods of data collection and sampling are described by Wakabayashi et al. (1985). Data collected at each

Table 5.--Relative fishing powers of the Mller Freeman and Tomi Maru No. 51 based on comparison of mean catch rates from 22 side-by-side tows on the continental slope.

Species"	umber of stations at which species was taken ${ }^{\text {b }}$		$\begin{gathered} \text { Mean catch rates } \\ \text { (kg/ha) } \end{gathered}$		Ratio of catch rates
	Tomi	$\frac{\text { Miller }}{\text { Frooman }}$	Tomi	$\frac{\text { Miller }}{\text { Froome }}$	Tomi Maru/
	Maru	Freeman	Maru	Freeman	Miller Freeman
Walleye pollock	17	17	62.66	109.45	0.573
Pacific cod	10	10	4.94	8.30	0.594
Sablefish	22	22	14.78	11.09	1.333
Pacific ocean perch	13	13	27.53	6.13	4.494
Other rockfish	12	7	0.94	1.28	0.738
Shortspine thornyhead	15	15	1.34	1.15	1.167
Flathead sole	13	13	6.58	7.17	0.918
Arrowtooth flounder	21	19	20.64	11.99	1.722
Greenland turbot	22	20	28.64	10.94	$2.618^{\circ}$
Pacific halibut	13	3	1.66	0.33	$5.066^{\text {c }}$
Rex sole	15	12	1.30	0.69	1.892
Darkfin sculpin	17	16	0.91	1.69	0.537
Bigmouth sculpin	9	7	1.41	1.58	0.889
Marbled eelpout	2	2	0.13	0.04	3.179
Black eelpout	13	13	0.10	0.05	1.915
Twoline eelpout	13	10	0.64	0.33	1.921
Pacific flatnose	2	3	0.02	0.02	1.200
Smooth lumpsucker	3	3	0.04	0.09	0.501
Longsnout prickleback	- 6	5	0.10	0.02	$4.132^{\circ}$
Prowfish	4	3	0.34	0.57	0.602
Skates	18	8	1.03	1.14	0.909
Grenadiers	12	11	57.05	26.58	2.146
Snailfish	14	10	0.33	0.16	2.054

${ }^{a}$ For species not listed, observations were lacking or too few for meaningful
comparison. Vessels were assumed to have equal fishing powers for the species not listed.
${ }^{b}$ Data for this analysis are from 22 side-by-side tows by the two vessels.
${ }^{\text {c }}$ The Geisser and Eddy (1979) procedure indicates that the two vessels sampled distinct populations.

```
Table 6.--Species groupings used in presenting information on the distribution and abundance of principal species and species groups of fish.
```

Group name	Species included
Skates	All Rajidae
Smelts	All Osmeridae
Other eelpouts	All Zoarcidae except Lycodes raridens,   L. palearis, L. brevipes, L. diapterus,   L. concolor, and Bothrocara brunneum
Rattails	All Macrouridae
Other rockfish	All Sebastes except S. alutus
Thornyhead rockfish	All Sebastolobus
Irish lords	All Hemilepidotus except H . papilio
Other Myoxocephalus	All Myoxocephalus sculpins except M. jaok
Gymnocanthus	All Gymnocanthus sculpins
Malacocottus	All Malacocottus sculpins
Other sculpins	All Cottidae except species and species groups of sculpins listed above and Dasycottus setiger and Hemitripterus bolini
Poachers	All Agonidae
Snailfishes	All Cyclopteridae
Arrowtooth flounder	All Atheresthes
Flathead sole	All Hippoglossoides

station included haul position information, species composition by weight and number, and water temperature profiles. Random samples of principal species were measured for length at most stations where they appeared in catches. Age-structure samples, stratified by sex and length class, was also collected from commercially important species. Approximate numbers of length measurements and age structures collected are given in Table 7.

The 1988 sampling and data collection procedures were identical to those used in 1979 (Wakabayashi et al. 1985) with the following modifications: 1) All vessels used Loran C to determine positions at the beginning and end of each tow, and 2) shipboard computers were used on the Japanese vessel as well as all U.S. vessels for recording data on disks.

Echo Integration-Midwater Trawl Survey
Techniques for the Bering Sea EIMWT surveys are described by Traynor and Nelson (1985), and additional details are reported by Bakkala and Wakabayashi (1985) and Walters et al. (1988). The echo integration system consists of a 38 kHz transmitter and receiver, a towed transducer, and a computer-based echo integration and target-strength measurement system. The acoustic system was installed in a portable container that was located on the deck of the survey vessel. The transducer was mounted in a dead-weight towed body that was towed behind the vessel at an approximate depth of 11 m at vessel speeds of 9 to 11 knots. While transecting, echo integrals (which are proportional to fish density) were computed for up to 400 l-m surface-locked depth intervals and 40 l-m bottom-locked intervals every minute.

Estimates of walleye pollock target-strength distributions were obtained when conditions suitable for single-target recognition were encountered. In these situations, the transducer was lowered to bring it as close as possible to the targets. In situ target-strength measurements were obtained by means of dual-beam and split-beam techniques (Ehrenberg 1983).

Midwater trawling was conducted on an opportunistic basis throughout the survey to identify sign and to obtain biological information. Extra trawls were conducted before and after the collection of target-strength data. For each sample collected with the Northern Gold midwater trawl, total weight was determined for each species (or higher taxon) caught, and total number was estimated for each species of finfish. The entire catch was sorted and weighed by species unless it exceeded approximately $1,100 \mathrm{~kg}$. Larger catches were subsampled and the total catch composition was estimated by extrapolation. Sex and length data were collected for each catch of walleye pollock. Random samples of pollock otoliths were taken at most trawl stations. Data on weight and maturity of pollock were collected from selected hauls.

Table 7. --Numbers of length measurements and age structures collected by species during the 1988 U.S.-Japan survey in the eastern Bering Sea.

Species	Bottom trawl survey			Midwater survey	
	Length frequencies ${ }^{\text {a }}$		Age structures ${ }^{\text {b }}$	Length frequencies	Age structures
	U.S.	Japan			
Walleye pollock	47,927	3.026	1,125	6,617	1,519
Pacific cod	8,432	308	649	--.	,
Arctic cod	949	--	---	---	---
Saffron cod	1,573	---	---	---	---
Sablefish	1,324	2,682	, ---	--	-..
Eulachon	---	---	---	20	---
Pacific Ocean perch	1,713	1,724	---	---	-
Northern rockfish	121	-.-	---	--	---
Rougheye rockfish	221	--	--*	- -	-..
Shortraker rockfish	112	-*-	---	-."	---
Shortspine thornyhead	1,156	573	---	---	-.-
Yellowfin sole	33,757	-.-	598	--	---
Limanda sakhalinensis	275	-**	---	---	---
Rock sole	30,848	4	$471{ }^{\text {c }}$	---	-.
Flathead sole	17,739	2,440	375	---	---
Alaska plaice	8,920	---	348	---	---
Rex sole	. 499	- 22	---	--	---
Arrowtooth flounder ${ }^{\text {d }}$	9,472	3.430	263	---	---
Greenland turbot	1,584	2,742	105	---	---
Pacific halibut	1,028	64	-.	---	
Longhead dab	5 275	-. -	--	---	---
Bering flounder	5,082	-.-	---	---	---
Starry flounder	16	---	---	---	-.
Dover sole		$13{ }^{3}$	---	---	---
Coryphaenoides sp.*	2,973	1,348	---	---	---
Berryteuthis magister'	675	1,293	---	...	-- -
Pandalus sp. ${ }^{\text {P }}$	---	75	, - -	---	--
Northern pink shrimp ${ }^{\text {d }}$	--.	294	' -..	---	- -
Pandalus tridens ${ }^{\text {² }}$	---	25	--	---	---
Sidestripe shrimp ${ }^{0}$	---	397	, $\quad$ -	-	---

n Fork lengths (anterior tip of the head to the middle portion of the posterior edge of the caudal fin) were measured for all species of fish except grenadiers.
© Otoliths except scales also collected for Pacific cod.
c Individual length-weight data also collected for rock sole.
${ }^{\text {d }}$ Includes Kamchatka flounder (Atheresthes evermanni Jordan and Starks).

- Anus lengths were measured for grenadiers (anterior tip of the head to the middle of the anus).
${ }^{1}$ Mantle lengths were measured for squids (anterior tip to the posterior tip of the mantle).
${ }^{0}$ Body lengths were measured for shrimp (posterior-most part of the orbit to the posterior tip of the telson).

The Marinovich midwater trawl was used to sample age-0 pollock when they were detected acoustically. In almost all cases, catches of age-0 pollock occurred with large quantities of jellyfish. When age-0 pollock were caught, a sample was measured to obtain an estimate of size composition.

Vertical salinity and temperature profiles were obtained at each trawl location with a Seabird Model SBE CTD probe.

Data Analyses

## Bottom Trawl Survey

The methods of data analysis used for the bottom trawl survey were the same as those used in 1979, which were described in detail by Wakabayashi et al. (1985). In general terms, catches at each station were standardized to a basic sampling unit (kg/ha $=$ kilogram per hectare or $10,000 \mathrm{~m}^{2}$ ) trawled. Mean CPUE values for each species and stratum, adjusted by fishing power coefficients where appropriate, were then computed from the standardized catch rates. The overall mean CPUE for the entire survey area was determined as the sum of the mean CPUE values of individual strata weighted by the size of each strata. Standing stock biomass estimates were derived using the "area swept" method of Alverson and Pereyra (1969). Vulnerability (the proportion of the population available to the fishing gear that is caught when encountered by the gear) of all species to the most efficient vessel-trawl combination was assumed to be 1.0 .

In estimating the length composition of the sampled populations, the number of individuals within sex and size classes for each station was derived by expanding the lengthfrequency subsample to the total catch per standard sampling unit. The length composition data from individual station data were then extrapolated to the total strata area and summed over all strata to obtain estimates for the total survey area. We composition was estimated by proportioning the computed population length-frequency distributions to ages using agelength keys that were stratified by sex and size categories.

Problems in ageing walleye pollock from midwater trawl samples are described in the following section. This problem was not as severe in ageing pollock from the bottom trawl samples, and all age readings were used in developing an age-length key for estimating the age composition of near-bottom pollock.

Echo Integration-Midwater Trawl Survey
Size-specific biomass estimates and population estimates for each stratum were obtained by combining echo integration data with midwater trawl catch information. In situations where insufficient trawl samples had been taken within a stratum, data
from catches in adjacent strata were also used.. Because the availability of in situ target-strength data is limited, mean target strength for each stratum was computed from the size composition data by means of the regression relationship presented by Foote and Traynor (1988). The computed mean target strength estimates were then used to scale the echo integration results to provide estimates of mean fish density (Traynor and Nelson 1985).

For each stratum, pelagic walleye pollock biomass was calculated as the product of mean density and area. Age-and size-specific biomass and population estimates were calculated using midwater trawl length-frequency data, a length-weight relationship, and an age-length key.

As a quality control procedure during age reading at the AFSC, 20\% of the pollock otoliths were read a second time by an independent test reader. In cases where the original and tested age estimates did not agree, the original reader and the test reader review the reading and agree on a resolved age. A comparison between original and resolved ages for the tested sample from this survey revealed a systematic difference: an unusually high proportion of resolved ages were lower than the originally estimated age (for originally estimated ages of 2-8 years). Because it was not feasible to reread the whole sample, it was not possible to produce corrected age-length keys. Therefore, it was assumed that rereading of the entire sample would result in an overall change in age composition equivalent to that observed in the tested portion and the initial agespecific biomass so population estimates were adjusted accordingly.

As a result of this procedure, inconsistencies will be observed in the results, particularly with regard to the relationships between numbers, biomass, and mean weight. Also, it was considered inappropriate to present the original age-length keys for EIMWT pollock samples in this report.

## ASSUMPTIONS AND LIMITATIONS

## Bottom Trawl Survey

The assumptions and limitations that apply to most trawl surveys also apply to the 1988 cooperative survey. The estimates of abundance and size composition, as well as the distribution of the species, are limited by the area and timing of the surveys, and the sampling gear used. The survey is designed as a multispecies survey, and therefore has some limitations for almost any individual species. For example, during the summer period when the survey was performed, many species have juvenile distributions close inshore 'in shallow waters where the trawl cannot be operated effectively. These include many of the
flatfish and herring as well as some of the cods and smelts. On the continental slope the bottom terrain is such that trawlable bottom is difficult to find. Some species, such as the rockfishes, are known to congregate in areas where trawling is impossible. In addition, there are a number of species that have distributions extending beyond the depth and geographic boundaries of these surveys.

The trawl used in the bottom trawl survey is designed primarily for demersal species. The head rope height is limited to a few meters, and species that display primarily pelagic behavior may not be well represented in the trawl catches. In some cases this phenomenon may be limited to specific age groups within a species. The catchability coefficient is assumed to be 1.0 in this analysis. The actual value may be less than that because of. escapement by some species. Then again, for some other species, the herding effects of the doors and dandylines may result in catchabilities exceeding 1.0 .

The bottom trawl survey on the major portions of the continental shelf is designed to progress from east to west. It is believed that most of the target species migrate from west to east during the summer period and would therefore be sampled only once, rather than following the same group of fish. Some of the species may have opposite or near-random movement. In those cases there may have been unknown errors caused by such movements. For most species, these various factors are believed to result in an underestimation of abundance rather than an overestimation. The difference between the estimates and the true value may vary considerably between species.

## Echo Integration-Midwater Trawl Survey

Many of the sources of bias associated with bottom trawl assessment of demersal stocks are also of concern when using EIMWT techniques for pelagic stock assessment. In general, these aspects relate to fish availability and are discussed in detail above. Because our survey covered most of the shelf and slope area within a relatively short period of time, we believe that immigration, emigration, or migration of walleye pollock within the survey area were insignificant. However, because the EIMWT survey was conducted during both daylight and darkness, changes in vertical distribution, particularly diel vertical migrations between midwater and the bottom may have produced bias in the pollock biomass estimates.

During analysis of the EIMWT data, it was assumed that the effective height of the bottom trawl was 3 m . Acoustic data collected within 3 m of the bottom were not included in the analysis. Total pollock abundance is assumed, then, to be the sum of abundance estimates from the two surveys. It has been observed that pollock frequently dive as they become aware of an approaching net; this may result in a much greater effective
height for the bottom trawl. If this occurred frequently it could have caused overestimation, especially of larger pollock which are generally found close to the bottom. We are planning experiments to address this problem during the next triennial survey.

Several sources of bias are of specific concern when using acoustic techniques to survey pelagic stocks. These include echo sign identification, determination of fish target strength, measurement of equipment performance during calibration, and selection of the density threshold during data collection.

The principal source of information for identification of echo sign is obtained by midwater trawling. The data obtained during midwater trawling are also used to apportion the biomass and population estimates by size and age. Consequently, inadequate trawl sampling may contribute to errors in species identification and in the estimation of stock size and age composition. Because AFSC scientists have conducted EIMWT surveys of walleye pollock for a number of years, and have developed extensive expertise in echo sign identification and allocation of midwater trawl effort, we do not believe that echo sign misinterpretation or inadequate trawl sampling were substantial sources of bias during this survey.

Fish target-strength estimation is a serious concern in all acoustic stock-assessment work. Fish target strength is the factor used when converting the relative biomass estimates obtained during echo integration into absolute abundance estimates; it is influenced by fish size and behavior. In previous surveys, we have used length-specific target-strength estimates based on published information. Recent work on walleye pollock swimbladder morphology and target strength by Foote and Traynor (1988) now provides us with a regression relationship for calculating target strength which should reduce the bias associated with this factor. In the future, we plan to collect sufficient in situ target-strength data to provide time-and areaspecific information.

Complete system calibration was conducted before and after the survey, and field calibrations were conducted three times during the season. We believe that unbiased instrument performance measurements were obtained during these occasions.

The normal practice of setting the density threshold high enough to exclude all extraneous returns (from noise and small scatterers) will result in the exclusion of some fish targets, especially when the fish are sparsely distributed; low densities of walleye pollock may not have been detected, particularly at depths greater that 200 m . However, because most pollock were observed in relatively dense schools shallower than 200 m , this source of bias is not thought to have been serious. In some areas, pollock may have been obscured by dense aggregations of
zooplankton and jellyfish; data from these aggregations were not used to estimate pollock abundance.

RESULTS OF 1988 TRIENNIAL SURVEY
Station Data
Station data from the 1988 survey are listed in Appendix B. The data are organized by area of survey activity and vessel. Appendix Tables Bl-B4 contain standard bottom trawl stations used in the analyses; Tables B5-B6 contain the station data from the acoustic survey.

## Environmental Conditions

Sea surface temperatures recorded during the 1988 survey ranged from 2.8 to $12.9^{\circ} \mathrm{C}$ (Fig. 7). Two cells of cold $2.8-4.0^{\circ} \mathrm{C}$ water were observed within the 50 m isobath off northern Bristol Bay. Most of the remaining inner shelf water ranged from 4 to $6^{\circ} \mathrm{C}$ Midshelf surface water mainly ranged from 6 to $8^{\circ} \mathrm{C}$ as did the outer shelf water south of the Pribilof Islands. Surface waters over the outer shelf north of the Pribilofs and over much of the slope ranged from 8 to $10^{\circ} \mathrm{C}$. There was some colder $7-8^{\circ} \mathrm{C}$ surface water over the extreme northern and southern slope areas that also extended onto the shelf in these regions. The warmest temperatures observed were near shore on the north shelf where surface temperatures exceeded $10^{\circ} \mathrm{C}$.

Bottom temperature conditions during summer 1988 were some of the coldest observed since 1975 (Fig. 7). Water of less than $0^{\circ} \mathrm{C}$ covered extensive areas of the midshelf to as far south as the vicinity of the Pribilof Islands. Such an extensive tongue of subzero water has only been observed previously in 1975 and 1986. The large mass of $0-2^{\circ} \mathrm{C}$ water extending over the majority of the central shelf and portions of the inner and outer shelves is also typical of colder years. Somewhat warmer $2-4^{\circ} \mathrm{C}$ bottom water was found over most of the outer shelf and the slope. Bottom temperatures on the slope were quite uniform with almost all the observations ranging from 3.1 to $3.9^{\circ} \mathrm{C}$. Some much warmer bottom temperatures $\left(7-10^{\circ} \mathrm{C}\right.$ and higher) were recorded on the more inshore areas of the north shelf.

The mean bottom temperature for the standard annual survey area (excluding the north shelf) was $2.3^{\circ} \mathrm{C}$ (Fig. 8). This value falls at the lower end of the range of mean summer bottom water temperatures ( $1.8-5.1^{\circ} \mathrm{C}$ ) for years in which the total standard area has been surveyed. Mean bottom temperatures observed over a more limited region of the southeast Bering Sea which has been sampled annually since 1971 have ranged from 1.2 to $4.8^{\circ} \mathrm{C}$; the 1988 value for this area was $3.0^{\circ} \mathrm{C}$, near the middle of 'the range for this area.


Figure 7.-- Distribution of surface water (top panel) and
bottom water (lower panel) temperatures $\left({ }^{\circ} \mathrm{C}\right)$

observed during the 1988 survey.


Figure 8. --Mean bottom temperatures in the eastern Bering Sea based on bathythermograph casts during the Alaska Fisheries Science Center's groundfish surveys. The 1971-88 means (dashed line) are from the southeast Bering Sea (see inset) and the 1975 and 1979-88 means (solid line) are from the larger survey area outlined on the inset.

All species of fish and invertebrates taken during the 1988 survey are ranked by relative abundance (CPUE) in Appendix Table C-3. There were 106 species of fish identified among 34 families, similar in number to the 108 species among 33 families identified during the 1982 triennial survey (Bakkala et al. 1985).

Two species not taken during earlier surveys were identified during the 1988 survey: longnose lancetfish (Alepisaurus ferox) and yellowtail rockfish (Sebastes flavidus).

Overall Abundance of Major Fish and Invertebrate Families
The total animal biomass for the overall survey area was estimated at 26.1 million $t$, of which fish species accounted for $84 \%$ ( 21.8 million t) and invertebrates $16 \%$ ( 4.2 million $t)$ (Tables 8 and 9). Within the groundfish complex, the most abundant families were the cods which represented 61\% (13.3 million t) of the total fish biomass and the flatfish (7.3 million t), which represented $33 \%$ of the total biomass; these families combined represented $94 \%$ of the total fish biomass. The next most abundant families were the skates and sculpins representing 2 and $1 \%$ of the total, respectively.

The most abundant invertebrate groups were the crabs (43\% of the total sampled invertebrate biomass), starfish (22\%), and snails (12\%). The majority of the fish biomass (92\%) was located on the eastern Bering Sea shelf (subareas l-6, Fig. 9; see Fig. 3 for location of subareas). The north shelf (subareas 7-8) accounted for $6 \%$ of the total fish biomass and the continental slope (subareas 9-12) for $2 \%$. The majority of the fish biomass (44\%) was located on the outer shelf (subareas 5-6), but they were also abundant (35\%) in the middle shelf subareas (Fig. 9). Over a third of the total fish biomass ( 8.1 million $t$, or $37 \%$ ) was located in the outer shelf subarea north of the Pribilof Islands (subarea 6) with most of this (7.4 million t) consisting of walleye pollock. Most ( 7.5 million $t$ or $62 \%$ ) of the total biomass of pollock derived from the combined bottom trawl and acoustic survey data were sampled by bottom trawls.

## Relative Importance of Individual Species of Fish

Listings of all species of fish and invertebrates in order of relative abundance (CPUE) taken on the continental shelf and slope and in the overall survey area are presented in Appendix C.

Bottom Trawl Survey
Figure 10 illustrates the relative importance of major species and species groups taken during the 1988 bottom trawl

Table 8.--Biomass estimates (metric tons, t) for major fish species and fish groups taken during the 1988 bottom trawl and midwater hydroacoustic survey.

Texon	Estimated total biomass ( $t$ ) and $95 x$ confidence interval	Proportion of total animal biomass ${ }^{\wedge}$	Estimated blomass by subarea ( $t$ )											
			Eastern Bering Sea shelf						North shelf		Slope			
			1	2	3	4	5	6	- 7	8	9	10	11	12
Gadidae (cods)														
Walleye pollock														
Demersal	$7.511 .167 \pm 19 \%$	0.288	146,232	45,193	1,188,969	1,164,403	420,077	3,957.156	90,886	367,399	62.943	67,394	461	54
Miduater ${ }^{\text {a }}$	$4.675 .436 \pm 17 \%$	0.179			500.493	195,864	586,962	3,159.824						
Pacific cod	1,046,476 $\pm 15 \%$	0.040	112,330	37,913	244,407	165,431	101,393	298,069	42.520	35,011	1,777	7,410	214	0
Orher cods	$\frac{83}{13.640} \ddagger$	$\frac{0.003}{0.511}$	$\frac{2,052}{260,614}$			- 6	$\frac{0}{1.108 .432}$	7,415,049	$\frac{38,724}{172,130}$	$\frac{41,384}{590,881}$	$\bigcirc{ }_{131,760}^{0}$		$\frac{0}{675}$	$\frac{0}{54}$
Total cods	13,316,719	0.511						7,415,049						
Anoplopomatidae Sablefish	30,786 $\pm 40 \%$	0.001	0	0	0	0	199	130	0	0	15,367	4,286	6,622	4,182
Scorpaenidae (rockfish)														76
Pacific ocean perch		. 0.001	0	0	0	0	548	0	0 0	0	2,577	26,090	3,616	896
Thornyheads		$\begin{array}{r}\text { ¢. } 001 \\ \times .001 \\ \hline 8\end{array}$	0 0 0	0 0	$\begin{array}{r}0 \\ 41 \\ \hline\end{array}$	O	$\begin{array}{r}6.907 \\ \hline 7.45\end{array}$	143	0   0	0	+1,025	727	$\begin{array}{r}3.616 \\ \hline 756 \\ \hline\end{array}$	$\begin{array}{r}86 \\ \hline 91 \\ \hline\end{array}$
Other rockfish Total rockfish	$\frac{96.370}{44} \frac{14}{55 \%}$	$\overline{0.002}$	0	0	41	0	7.455	145	0	0	4,443	26.912	4.511	$\overline{863}$
Pleuronectidae (flatfishes)														
, Yellowfin sole	3,069,387 $\pm$ 15\%	0.118	1,303,331	353,022	944,667	253,421	0	121	174,077	40,708	0	0	0	0
Rock sole	1,914,741 $\pm 13 \%$	0.073	878.172	114,095	590.458	265,793	3.633	51,393	5.941	5,240	B	+16	0	0
Flathead sole	,618,884 $\ddagger 15 \%$	0.024	13.667	628	201,515	46,884	98,571	196, 218	4.726	45,946	8,842	1.769	110	0
Alaske plaice	1,080,644 $\ddagger 30 \%$	0.041	173.502	70,373	366, 305	295,049	175	31,379	85,702	38.158	${ }^{0}$	$1{ }^{0}$	0	0
Arrowtooth flounder	$337.053 \pm 20 x$	0.013	1,018	0	77,555	13,442	91,999	122.348	0	3132	16,908	12,162	1.210	279
Greentand turbot	57.562	0.002	0	0		15.209	288	11.071	0	3,259	16.015	12,942	11,348	2,432
Pacific halibut	$142.507 \pm 17 x$	0.005	30,973	10,915	24,761	15,137	28,306	28,061	2.712	304	915	357	48	17
Other flatfish	59,395 $\ddagger 19 \mathrm{x}$	0.002	24.088	5.743	8.970	259	8, 766	\% 3 , 984	4.516	$\frac{1}{135} .222$	$\frac{1,538}{46,220}$	-153	$\frac{136}{12.857}$	20 2.751
total flatish	$\overline{7,260.174} \pm \overline{118}$	0.278	2,424,752	554,776	2,214,233	890,194	231.734	4.46 .574	277.624	135.060	44,220	27.400	12,857	2,751
Clupeidae Pacific herring	164,956 + $176 \%$	0.006	153,848	1,721	758	6.694	0	3,421	51	460	2	0	0	0
Cottidae (sculpins)	$314.666 \pm 25 \%$	0.012	46,295	16.479	19.936	119.765	8,363	25.017	44,782	30,134	1,179	2,075	577	62
Macrouridae (ractails)	) $61.377 \pm 28 \%$	0.002	0	0	0	0	0	0	0	0	3,144	11,334	9,659	37,240
Zoarcidae (eelpouts)	$95.331 \pm 20 \%$	0.004	313	22	5,414	25.024	937	19.673	5,480	34.475	687	217	2,864	225
Osmeridae (smelts)	$9.686 \pm 30 \%$	0.001	2,166	590	359	117	2,368	0	1,691	2,378	16	0	0	0
Agonidae (poachers)	26,579 $\pm 21 \%$	0.001	6,795	3.902	7.778	6.963	191	157	650	37	68	26	9	2
Cyclopteridae (snailfish)	ish) $13.358 \pm 19 \%$	0.001	240	62	395	3.387	27	3,164	251	5.271	220	200	54	87
Rajidae (skates)	$470,488 \pm 19 \%$	0.018	9.310	2.540	66,017	77.832	107,472	187.254	7.540	10,001	870	1,388	112	151
Other fish	$23.184 \pm 70 \%$	0.001	413	788	1.107	918	7,391	8,249	296	175	506	1,553	1,527	259
Total fish	21,831,672	0.837	2,904,747	664,845	4,249.910	2,655,214	1,474,569	8,106,835	510,498	$\overline{809,872}$	202.482	$\overline{168,359}$	39,466	45,876

[^2]"Subareas 1, 2, 11, and 12 were not sampled during the midnater acoustic survey.
Note: Differences in sums of estimates and totals are due to rounding.

Table 9.--Biomass estimates (in metric tons, t) for major invertebrate species and invertebrate groups taken during the 1988 bottom trawl survey.

Taxon	Estimated total biomass ( $t$ ) and 95x confidence interval	Proportion of total animal biomass	[._Estimated biomass by subarea (1)											
			___Eastern Bering Sea shelf						North shelf		Slope			
			1	2	3	4	5	6	7	8	9	10	11	12
Crustacea														
$\frac{\text { Chionoccetcs }}{(\text { snow crah })}$	1,252,038 $\pm 13 \%$	0.048	24.777	10.557	183,092	442,540	9.616	132,629	60.166	388,061	59	40	440	62
$\frac{\text { Lithodes sp. }}{\text { (king crab) }}$	177 $\pm 95 \%$	$<.001$	0	0	0	0	0	106	0	0	17	13	37	3
$\frac{\text { Paralithodes }}{\text { (king crab) }} \text { sp. }$	60,646 $\pm 38 \%$	0.002	10,884	497	42.287	6,627	0	136	76	138	0	0	0	0
$\frac{\text { Erimacrus }}{\text { (hair } \frac{\text { isenbeckii }}{\text { ab) }}}$	ii $1,420 \pm 65 \%$	$<.001$	55	228	324	766	47	0	0	0	0	0	0	0
Paguridae (hermit crab)	$482.010 \pm 15 \%$	0.018	51,280	34,207	128.222	146,707	4,412	58,009	44,714	14,444	3	8	3	1
Other crab   Toral crab	$\frac{41,261}{1.837 .551} \pm \frac{24 \%}{11 \%}$	$\frac{0.002}{0.070}$	$\frac{15,385}{102,380}$	6.826 52.314	$\begin{array}{r}7.525 \\ \hline 361.449\end{array}$	$\begin{array}{r}6.118 \\ \hline 602.757\end{array}$	$\frac{330}{16.405}$	-192.457	$\frac{2,686}{107,643}$	- 929	$\frac{1}{78}$	$\frac{1}{62}$	6	0
Shrimps	9,328 $\ddagger 23 \%$	$<.001$	102.380 376	52.394	361.469	602. 191	16. 145	192,338 2,859	107.643 2,099	403,573 2,249	78 347	62 209	486 29	66 22
Other crustaceans	8,752 $\pm \frac{88 \%}{10 \%}$	$\bigcirc .001$	560	0	1.017	452	2, 016	$\begin{array}{r}2,85 \\ \hline 15\end{array}$	2,692	$\begin{array}{r}2,249 \\ \hline\end{array}$	$\begin{array}{r}38 \\ \hline\end{array}$	$\begin{array}{r}209 \\ 0 \\ \hline\end{array}$	29 0	22
Total erustaceans.	$\overline{1,855,630} \pm \underline{10 \%}$	0.071	$\overline{103,316}$	52,613	$\overline{362.968}$	603.401	$\overline{16,566}$	195,211	114,433	405.822	426	271	516	88
Mollusca														
Gastropoda (snails)	506,614 $\pm 14 \%$	0.019	42,039	48.757	135,342	102,695	6,153	87,790	47.014	36,723	12	18	68	3
Pelecypoda (bivalves)	es) $9.886 \pm 42 \%$	<. 001	988	796	1,037	1.226	84	1,781	3,632	36	0	1	0	0
Squids	2,274士 $25 \%$	<. 001	0	0	${ }^{4}$	. 0	2	- 98	- 0	0	1,157	579	391	42
Octopuses Other mollusks	10,647 $5 \pm \begin{array}{r}\text { 5 } \\ \text { ¢ }\end{array}$	$\begin{array}{r}\text { ¢ } \\ \hline .001 \\ \hline .001\end{array}$	0 0	0 0	943 0	301	$1.987$	$7.136$	30	$141$	129 0	48	12	19
Other mollusks rotal mollusks	$529.425 \pm \frac{200 \%}{14 \%}$	$\bigcirc$	43,027	- 49.552	137,326	$\overline{104.227}$	$\frac{0}{8,227}$	$\frac{0}{96,805}$	$\begin{array}{r}\text { \% } \\ \hline 50.676\end{array}$	\% $\begin{array}{r}0 \\ 37.206\end{array}$	$\frac{0}{1,199}$	$\bigcirc$	$\frac{0}{471}$	$\frac{0}{64}$
Echinodermata														
Asteroidea (starfish)	995,381 $\pm 16 \times$	0.038	314,438	153,968	217.243	124.899	1,283	75,080	84,944	23,179	77	12	151	6
Ophiuroidea (brittlestars)	203,417 \# 29\%	0.008	3,321	937	44.448	18,726	28.773	84,489	5.471	16,667	0	2	573	0
Echinoidea (sca urchin)	14,741 + 59\%	0.001	99	124	3.501	7,280	1,987	1.282	381	84	1	1	0	0
holothuroidea (sea cucurbers)	15,432 $\pm 113 \%$	0.001	8,890	0	5,872	42	0	65	9	54	361	7	122	10
Total echinoderms 1,	$\overline{1,228,972} \pm \overline{14 \%}$	$\overline{0.047}$	$\overline{326,748}$	$\overline{155,029}$	$\overline{271,063}$	$\overline{151,047}$	$\overline{32,043}$	160,926	$\overline{90.805}$	$\overline{39.985}$	440	23	$\overline{847}$	$\overline{16}$
Ascidiacea	$337,010 \pm 31 \%$	0.013	60,392	29.746	80.103	92,513	0	42	70,710	3,505	0	0	0	0
Porifera (sponges)	132,244 $\pm 133 \%$	0.005	2,588	235	116,389	10,441	667	541	204	71	4	28	1,076	0
Coelenterata														
Other invertebrates	12,329 $\pm 50 \%$	0.001	3,890	183	1.700	841	6	4,097	843	757	1	6	3	1
Total invertebrates 4 .	$\overline{4.237 .741} \pm \overline{9 \%}$	$\overline{0.163}$	553,253	289.265	1,007,394	. 004.081	89.355	461.755	335.161	$4 \overline{89.926}$	$\overline{2,886}$	$\overline{1.193}{ }^{\text {a }}$	3,225	$\overline{248}$

'Proportion of total estimated biomass, fish and Invertebrates combined, for the total survey area (Total estimated biomass = $26,069,413$ t).
Note: Differences in sums of estimates and totals ore due to rounding.


Figure 9.--Distribution and relative abundance of total fish in the eastern Bering Sea, including midwater walleye pollock, as shown by the 1988 bottom trawl and midwater surveys.


Figure 10.--The relative importance of selected species by depth interval as shown by proportion of biomass from the 1988 eastern Bering Sea bottom trawl survey.
survey. Table 8 presents biomass estimates for all principal species and species groups of fish from the bottom trawl data and includes the walleye pollock data from the EIMWT survey.

Over all depths, walleye pollock was the most prominent species representing nearly $44 \%$ of the total fish biomass estimate from the bottom trawl survey (Fig. 10). Including the EIMWT survey estimate, walleye pollock made up 56\%. Flatfish represented an important component of the bottom trawl estimates. Yellowfin sole was the second most abundant species representing $18 \%$ of the total fish biomass, and rock sole was third with 11\%.

The relative proportion of each species in the bottom trawl survey varied considerably with depth. In the inshore waters less than 50 m in depth, yellowfin sole was the predominant species, representing $45 \%$ of the total fish biomass estimate. Rock sole was second with $25 \%$ and Alaska plaice was third with 8\%. In these waters, walleye pollock made up only 7\% of the estimated fish.

Across the rest of the shelf, from 50 m to the shelf edge near 200 m , walleye pollock made up 56\% of the bottom trawl biomass estimate for fish. Yellowfin sole was second with $10 \%$ and rock sole was third with 7\%. Pacific cod (Gadus macrocephalus) was also near 7\%.

On the continental slope, walleye pollock was still the predominate species with $32 \%$ of the biomass. Greenland turbot was second with $20 \%$, and the rattails were third with $15 \%$. Sablefish (Anoplopoma fimbria), arrowtooth flounder (Atheresthes stomias), and Pacific ocean perch (Sebastes alutus) each accounted for nearly 7\%.

Echo Integration-Midwater Trawl Survey
As described under methods, two types of midwater trawls were used to sample midwater walleye pollock. The smaller Marinovich trawl, with a 3.2 mm codend liner, was directed at juvenile fish sign while the Northern Gold rope trawl, a commercial midwater pollock trawl, was directed at adult pollock sign. As would be expected, catch compositions differed between the two trawls. Age-l and older walleye pollock dominated rope trawl catches over all depths and comprised $99.8 \%$ by weight of the total catch of fish (Table 10). This proportion was similar from the three hauls over bottom depths of $50-100 \mathrm{~m}$ and from the 22 hauls over bottom depths of $100-200 \mathrm{~m}$. Other species, mainly Pacific cod, were taken in very small quantities.

Pollock also dominated catches from the Marinovich midwater trawl (Table 11). Adult flatfish dominated the aggregated catch composition by weight from the six hauls over bottom depths of $50-100 \mathrm{~m}$ because two adult flatfish were caught in one of the hauls. Overall, juvenile pollock dominated the fish catches; pollock was the only species taken in the four Marinovich tows

Table 10. --Rank order of abundance of all fish taxa taken by the Northern Gold 1200 Rope trawl during the 1988 midwater survey.

Taxon	Proportion of total catch	Cumulative proportion
Over bottom depths of $50-100 \mathrm{~m}$		
Walleye pollock	0.9908	0.9908
Pacific cod	0.0082	0.9991
Flatfish (unident.)	0.0007	0.9998
Pacific herring	0.0002	1.0000
Over bottom depths of $100-200 \mathrm{~m}$		
Walleye pollock	0.9976	0.9976
Pacific cod	0.0013	0.9990
Pacific herring	0.0005	0.9995
Coho salmon	0.0004	0.9998
Eulachon	0.0001	1.0000
Rock sole	$<0.0001$	1.0000
Smooth lumpsucker	<0.0001	1.0000
Over all bottom depths		
Walleye pollock	0.9975	0.9975
Pacific cod	0.0015	0.9990
Pacific herring	0.0005	0.9995
Coho salmon	0.0004	0.9998
Eulachon	0.0001	0.9999
Rock sole	$<0.0001$	1.0000
Flatfish (unident.)	$<0.0001$	1.0000
Smooth lumpsucker	$<0.0001$	1.0000



Taxon	Proportion of total catch	Cumulative proportion
Over bottom depths of 50-100 m		
Flatfish (unident.)	0.5517	0.5517
Walleye pollock	0.3103	0.8621
Pacific sand lance	0.0345	0.8966
Poacher (unident.)	0.0345	0.9310
Roundfish (unident.)	0.0345	0.9655
Flatfish larvae	0.0345	1.0000
Over bottom depths of 100-200 m		
Walleye pollock	1.0000	1.0000
Over all bottom depths		
Walleye pollock	0.9612	0.9612
Flatfish (unident.)	0.0311	0.9922
Pacific sand lance	0.0019	0.9942
Flatfish larvae	0.0019	0.9961
Roundfish (unident.)	0.0019	0.9981
Poacher (unident.)	0.0019	1.0000

over depths of 100-200 m. For fish and invertebrates combined, jellyfish comprised $90.9 \%$ by weight of the Marinovich trawl catches over all depths.

Results of 1988 Studies on Age-O Walleye Pollock
In previous years, attempts have been made to assess the distribution and abundance of age-0 walleye pollock. However, practical difficulties were encountered because age-0 pollock were often found in close association with substantial quantities of jellyfish. In addition interpretation of survey results was confounded by within- and between-year differences in gear characteristics, survey area coverage, and survey timing. Therefore, a directed survey of age-0 pollock was not conducted in 1988 although hauls were made in areas where possible age-0 sign was encountered; when young-of-the-year pollock were caught, length frequency samples were collected. Because of the limited effort in 1988, it was not considered appropriate to compare these results with the age-0 observations from previous years.

Age-O pollock were taken in nine of the Marinovich tows. Most of these juveniles were encountered southeast of the Pribilof Islands and in water depths between 50 and 100 m , a known area of high abundance of age-0 pollock determined from previous triennial surveys (Walters et al. 1988). Overall, length measurements were taken from 268 fish having a mean length of 33.1 mm (Figure 11).

Abundance, Distribution, and Size and Age Composition of Principal Species of Fish, Shrimps, Squids, and Octopuses

Tables 15-45 and Figures 14-87 summarize findings from the 1988 U.S.-Japan survey for each of the principal commercially important species of demersal fish and the more abundant species groups such as the sculpins, eelpouts, and skates, and the shrimps, squids, and octopuses. (Note that the final section of the report comparing results of the four triennial surveys, which contains Tables 12-14 and Figures 12-13, precedes the above tables and figures. This arrangement allows all of the text to precede the large numbers of tables and figures in the remainder of the report as a convenience for the reader.) Tables summarize mean CPUE and biomass estimates, population numbers and mean size by subarea. Figures illustrate the geographic distributions and length compositions of each species. Where data are available, the age distribution and growth characteristics of the populations are also shown. Results of the hydroacoustic survey are also summarized in the walleye pollock section (except for results on age-0 pollock described above) along with combined results from the bottom trawl and hydroacoustic survey on pollock.


Figure 11. --Length distribution of age-0 walleye pollock as shown by sampling during the 1988 midwater survey.

COMPARISON OF RESULTS FROM THE FOUR TRIENNIAL SURVEYS
Results from the 1979, 1982, and 1985 triennial surveys were compared by Walters et al. (1988). This previous comparison did not include results of the EIMWT surveys of midwater walleye pollock, but did include results of the 1981 survey when both the continental shelf and slope waters of the eastern Bering Sea were also sampled with bottom trawls by U.S and Japanese vessels. In this previous comparison, a portion of the shelf was excluded in the vicinity of Nunivak Island because it was not sampled in 1981 (see Fig. 17 of Walters et al. 1988). In the present report only the results of the triennial surveys (1979, 1982, 1985, and 1988) are compared so that the results are compatible with the way the shelf data are normally analyzed and used. Abundance estimates from the EIMWT assessments of midwater pollock are also included. The comparison is limited to subareas l-6 on the shelf and the continental slope. North shelf data (subareas 7 and 8) are not included because sampling of this region has not been uniform during the four triennial years.

Trends in the abundance of major species and species groups of fish, as well as the overall groundfish complex from the 4 years of triennial survey data, are given in Table 12 and illustrated in Figure 12. These data indicate that the biomass of the total groundfish complex was remarkably stable at 15 million t from 1979 to 1985 but increased to about 20 million t in 1988. Despite the stability in the total biomass estimates between 1979 and 1985, major changes were occurring among species components. For example, between 1979 and 1982, the survey data showed a substantial decline in the biomass of walleye pollock of about 2.6 million $t$. This was offset by an apparent 2.27 million $t$ increase in biomass of flatfish, a 290,000 t increase in biomass of Pacific cod, and a $116,000 \mathrm{t}$ increase in other fish to maintain the total fish biomass at approximately 15 million $t$. Between 1982 and 1985, the survey data indicated that the biomass of walleye pollock increased by 1.5 million $t$ while the apparent biomass of flatfish decreased by about 858,000 t and other fish by 483,000 t to again maintain the biomass of the overall groundfish complex at about 15 million $t$. The increase in total fish biomass from 15 million to 20 million t between 1985 and 1988 was the result of increases in mean estimates for all species categories; the biomass of pollock increased nearly 2.2 million t, flatfish 2.5 million $t$, and other fish 511,000 t.

Some of these fluctuations may be an artifact of the availability or vulnerability of certain species to the surveys or to sampling error. The marked decline in pollock biomass estimates between 1979 and 1982 is questionable based on what is now known about the population at that time. The extremely large 1978 year class was recruiting to the population in that period (Bakkala 1989), and it seems unlikely that biomass would decline substantially between 1979 and 1982. It is possible that the abundance was overestimated by the 1979 survey, or that pollock

Table l2.-Blogase estimates for princlpal species and species groups of groundfish in the eastorn bering Sea as shown by the fears of triennial triennlal botion travi and hydroacoustle (aldwater) surveys.

Spaclas	Continental shelf				Contlnental slope				Shelf and slope combined			
	1979	1982	1985	1988	1979	1982	1985	1980a	1979	1982	1985	1988
Walleye pollock Demersal	2.939.029	2,908, 130	4,524.947	6.922.030	87,842	204,541	29.741	130,051	3,026,871	3,112,671	4,604,688	7,052,881
miduater	7,457,500	4,513,290	4,528,449	4,443,143	b	265,006	270,114	85, 206	7.457.500	4,778,296	4,798,563	4,528,349
Demeral and miduater	10,396,529	7,421,420	9,053,396	11,365,173	87,842	469,547	349,855	216,057	10,484,371	7,890,967	9,403,251	11,581.230
Pactifle cod	754,314	1,020,550	961,049	959,544	11,133	34,708	22,14]	9.400	765,447	1,055,258	983,192	968,944
Other codilshes	29,951	2,170	146	3,532	105	49	22	0	30.056	2,219	168	3,532
Sablafleh	42,508	7,497	18,485	329	12,818	42,944	34,720	30,457	55,326	50,441	53.205	30,786
Pacille ocean perch	5,247	162	844	551	4.459	5.948	32,392	28,882	9,706	6,110	33.236	29,433
Other Sebastes rocklishes	388	5,758	42	7,091	2,456	5,033	5,735	2,597	2.844	11.591	5,777	9.688
Thornyteads	0	0	0	0	3,190	4,353	5.119	5.250	3,190	4,353	5,119	5,250
Yellovitin sole	1,866,523	3,275.351	2,271,423	2,854, 362	<1	0	0	0	1,866,523	3,275,351	2,277,423	2,854,562
Rock sole	194.734	572,213	720,309	1,903,544	61	55	36	16	194,795	512,288	720,345	1,903,560
rlathend sole	104,894	197,450	329,919	557,404	2,936	6,212	10,474	10,728	107,830	203,662	340,393	568,212
Alaska plateo	217.198	700,345	553,294	936.783	く1	0	0	0	277,198	700,245	553,294	936,783
Greenland turbot	146.123	31,443	7,533	11,565	127.525	90,601	79,241	42.737	213,648	122.044	86, 780	54,302
Arroutooth ilounder	42.109	73,178	163,562	306, 361	33,815	24,749	74,392	30,560	75,924	97,927	237,954	336,921
Pactilic hallbut	66,862	61,562	69,109	130,153	2,541	1,835	7,105	1,318	69,403	63. 397	76,214	139,491
Other clatileh	30,916	147,770	33,044	51,810	392	1,709	987	1,847	\$1,308	149.479	34,031	53,657
Paclitie herring	12,648	3,643	32.111	164,443	0	0	<1	2	12,656	3,643	32,111	164,445
Sacles	10,386	10,658	2.626	5,601	29	3	60	16	10,415	10,661	2,686	5,617
Sculpina	328. 291	331.481	171,805	235,856	7,847	4,622	2.939	3, 894	336,138	336,103	174,744	239,750
Snalleishes	19.204	2.410	2,875	7.276	637	905	606	560	19,841	3,315	3.481	7,836
Poachers	26,988	13,908	3,176	25,787	51	23	20	105	21,039	13,931	3,196	25,892
Eelpouts	382.185	109,265	12,127	51,382	2,593	4.681	4,713	3.994	384,778	113,946	16,840	55,376
Skates	20,006	169,322	148,309	450.426	4.301	3,927	5.650	2,520	74,307	173,249	153,967	452,946
Grenadiers	0	0	0	0	91,470	104,724	107,624	61,377	91,470	104,724	107,624	61,377
Other fieh	18,522	11,059	7.125	10, 860	1,546	2,174	3.465	3,844	20,06日	13,233	10,590	22,712
Total tish	14,846,526	14,168,535	14,568, 306	20,056,119	391,758	809.606	747.311	456,183	15,244,284	14,978,141	15,315,617	20,512,302

[^3]

Figure 12.--Biomass estimates for principal species and species groups of fish and for all fish combined based on the 4 years of U.S.-Japan triennial bottom trawl and midwater survey data. Species abbreviations are Cod = Pacific cod, Poll. = walleye pollock, Yell. = yellowfin sole, Rock = rock sole.
were less available in the survey area in 1982 than in the other triennial survey years.

In 1979, population estimates of pollock were dominated by l- and 2- year-old fish. As a result of this good recruitment, population estimates were much higher in 1979 (134 billion) than during later triennial surveys when estimates ranged between 27 and 31 billion (Table 13). The time series of triennial survey age data for pollock now makes it apparent that recruitment in 1979, particularly for the 1978 year class was extraordinarily large. The 1978 year class has since dominated or contributed significantly to the biomass of the population, even at the advanced age of 10 years in 1988 (Table 14, Fig. 13). The time series also shows that there was moderately good recruitment from the 1982 and 1984 year classes. The 1985 survey data suggests that the 1979 and 1980 year classes were also moderately strong although this was not evident in other years.

Another phenomenon revealed by the series of triennial survey data is an increase in the average age of the pollock population during the 1980s (Fig. 13). In 1979 a high proportion of the biomass (78\%) was made up of age groups 1 to 3 with relatively few fish older than age 4 or 5 . This was typical of the eastern Bering Sea pollock population throughout the late 1970s (Bakkala 1989). During the 1980s there has been a shift to a dominance of older age groups in the sampled population which started with the progression of the strong 1978 year class through the population. Subsequent year classes, even though they have been weak to moderately strong, have remained abundant to advanced ages. By 1988, 68\% of the overall estimated biomass consisted of age groups older than age 4.

An interesting aspect of pollock behavior, revealed by the series of triennial survey data, is that older pollock tend to occupy near-bottom water to a greater degree than younger pollock. In 1979, only 29\% of the combined bottom trawl and acoustic biomass estimates were sampled by bottom trawls, but this proportion increased to $39 \%$ in 1982, $49 \%$ in 1985, and 61\% in 1988. The younger pollock, age-2 and age-3, appear to be consistently more abundant at midwater depths (Table 14). However, the vertical distribution of age-l fish has been more variable. In 1979, when the very large 1978 year class was age 1, a high proportion of their biomass was found in midwater. In subsequent triennial survey years when the new year classes were less abundant, the majority of the age-l biomass was found near the bottom. The results from the 1979 survey may have been anomalous because of the extraordinary large size of the 1978 year class.

The species group showing the greatest increase in abundance during the period of the triennial surveys was the flatfishes. Collectively, the biomass of the flatfish complex more than doubled between 1979 and 1988. However, this increase may be exaggerated by a change in survey bottom trawls between 1979 and

Table 13.--Estimated population numbers (billions) of walleye pollock from demersal and midwater surveys in 1979, 1982, 1985, and 1988*.

Age	Year   Class	1979			Year Class	1982		
		Midwater	Demersal	Total		Midwater	Demersal	Total
1	1978	69.110	7.752	76.862	1981	0.108	0.952	1.060
2	1977	41.132	5.759	46.891	1980	3.401	2.099	5.500
3	1976	3.884	2.389	6.273	1979	4.108	2.043	6.151
4	1975	0.413	1.187	1.600	1978	7.637	4.381	12.018
5	1974	0.534	0.780	1.314	1977	1.790	1.700	3.490
6	1973	0.128	0.379	0.507	1976	0.286	0.283	0.569
7	1972	0.030	0.196	0.226	1975	0.141	0.158	0.299
8	1971	0.004	0.091	0.095	1974	0.178	0.102	0.280
9	1970	0.028	0.097	0.125	1973	0.090	0.046	0.136
10	1969	0.060	0.064	0.124	1972	0.055	0.028	0.083
11+	--	0.102	0.056	0.158	1972	0.122	0.038	0.160
Total		115.425	18.749	134.175		17.920	11.830	29.750


		1985			Year   Class	1988		
Age	Year Class	Midwater	Demersal	Total		Midwater	Demersal	Total
1	1984	2.076	4.950	7.026	1987	0.011	2.010	2.021
2	1983	0.929	0.479	1.408	1986	1.112	0.593	1.705
3	1982	8.149	1.717	9.866	1985	3.586	1.224	4.810
4	1981	0.898	0.676	1.574	1984	3.864	2.318	6.182
5	1980	2.186	2.505	4.691	1983	0.739	1.026	1.765
6	1979	1.510	1.751	3.261	1982	1.882	3.398	5.280
7	1978	1.127	1.291	2.418	1981	0.403	1.013	1.416
8	1977	0.130	0.268	0.398	1980	0.151	0.798	0.949
9	1976	0.021	0.080	0.101	1979	0.130	0.478	0.608
10	1975	0.007	0.060	0.067	1978	0.255	1.201	1.456
11+	--	0.008	0.048	0.056	--	0.159	0.257	0.416
Total		17.041	13.825	30.866		12.292	14.316	26.608

[^4]Table 14. --Estimated biomass (thousands of metric tons) of walleye pollock from demersal and midwater surveys in 1979, 1982, 1985, and 1988.*

Age	Year Class	19\%9			Year   Class	1982		
		Midwater	Demersal	Total		Midwater	Demersal	Total
1	1978	1,901.0	222.7	2,123.7	1981	3.4	35.1	38.5
2	1977	3,895.0	679.3	4,574.3	1980	226.8	172.1	398.1
3	1976	996.9	612.6	1,609.5	1979	698.8	387.2	1,086.0
4	1975	168.5	518.1	686.6	1978	2,617.0	1,891.5	4,508.5
5	1974	229.2	388.2	617.4	1977	740.1	895.2	1,635.3
6	1973	73.1	250.2	323.3	1976	143.2	210.4	353.6
7	1972	22.6	179.1	201.7	1975	114.6	165.3	279.9
8	1971	3.7	100.1	103.8	1974	124.4	108.6	233.0
9	1970	25.3	107.7	133.0	1973	67.7	69.3	137.0
10	1969	51.3	74.1	125.4	1972	37.1	41.8	78.9
11+	--	90.9	72.2	163.1	--	128.2	63.1	191.3
Total		7,457.5	3,204.3	10,661.8		4,900.5	4,039.6	8,940.1
		1985				1988		
	Year				Year			
Age	Class	Midwater	Demersal	Total	Class	Midwater	Demersal	Total
1	1984	42.6	79.8	122.4	1987	0.3	39.5	39.8
2	1983	92.7	53.3	146.0	1986	126.1	60.5	186.6
3	1982	1,379.6	520.8	1,900.4	1985	1,045.5	420.5	1,466.0
4	1981	329.4	318.4	647.8	1984	1,279.5	935.0	2,214.5
5	1980	1,124.2	1,468.6	2,592.8	1983	300.6	529.7	830.3
6	1979	869.4	1,304.7	2,174.1	1982	1,059.4	1,990.0	3,049.4
7	1978	811.8	1,167.9	1,979.7	1981	248.7	683.6	932.3
8	1977	116.0	310.7	426.7	1980	108.8	675.4	784.2
9	1976	18.2	141.9	160.1	1979	118.3	453.0	571.3
10	1975	8.5	83.4	91.9	1978	233.4	1,375.5	1,608.9
$11+$	--	6.1	72.7	78.8	--	155.1	348.2	503.3
Total		4,798.5	5,522.2	10,320.7		4,675.4	7,511.2	12,186.6

[^5]

Figure 13 .--Biomass estimates (in metric tons $\quad$ walleye pollock as shown by combined data age of the 1988 bottom trawl and midwater surveys. Filled bars indicate the bottom trawl component and open bars indicate the midwater trawl component.

1982 and the unusually high fishing power coefficients used in 1988. As larger survey vessels came into use during the 1980s, it became necessary to employ a bottom trawl larger than the 400-mesh eastern trawl which had been used as the standard trawl. The new trawl, adopted in 1982 and used since then, is the 83-112 Eastern otter trawl. Substantial apparent increases in abundance for most species of flatfish between the 1981 and 1982 surveys suggested that the 83-112 trawl was more effective in capturing flatfish than the 400 -mesh eastern trawl (Bakkala et al. 1985).

As pointed out in the section on "Relative Fishing Powers", the 1988 data indicated the need to apply relatively high fishing power coefficients to an unusually large number of species, particularly in the case of the flatfish (Table 4). The application of these coefficients appeared to produce unreasonable increases in abundance of at least some of the flatfish. This may be another factor that exaggerated the increase in abundance of the flatfish complex between 1979 and 1988. Nevertheless, the abundance of most of the flatfishes has increased during the 1980s, and the abundance of the complex was at its highest observed level in 1988.

Despite the use of the same standard trawl since 1982, the survey data have shown what seems to be unreasonable fluctuations in abundance of some flatfish, particularly yellowfin sole. For example, the triennial survey biomass estimates for yellowfin sole, which increased from 1.9 million $t$ in 1979 to 3.3 million $t$ in 1982, decreased to 2.3 million $t$ in 1985, and then increased again to 2.9 million $t$ in 1988. The decrease between 1982 and 1985 was statistically significant based on nonoverlapping 95\% confidence intervals although the increase between 1985 and 1988 was not. Fluctuations in biomass of this magnitude are biologically untenable for a long-lived and slow-growing species like yellowfin sole. These fluctuations appear to be the result of year-to-year changes in the availability or vulnerability of yellowfin sole to the survey trawls. Although of lower magnitude and, thus, not as apparent, fluctuations in abundance of some of the other species of flatfish may also be an artifact of sampling error.

The triennial and earlier survey data have also documented increased abundance of other commercially important stocks such as Pacific cod, sablefish, and Pacific ocean perch. Most of the increase for Pacific cod occurred prior to the first triennial survey in 1979 as a result of the recruitment of a strong year class spawned in 1977. The biomass of Pacific cod has been relatively stable at about 1.0 million $t$ since 1982 and has been maintained at that level by recruitment of moderately strong year classes in 1982 and 1984. Juvenile sablefish of the 1977 year class were abundant on the eastern Bering Sea continental shelf during the 1979 triennial survey as well as in 1978 and 1980 (Table 12), the only such occurrence since survey activity was initiated in the early 1970s. The decline in abundance of juvenile sablefish on the shelf and the increase in abundance on
the slope in subsequent years indicate a movement of these juveniles to continental slope waters.

During the 9-year period of the triennial surveys, there have also been some large changes in abundance of some of the noncommercially important species groups, most notably for eelpouts and skates. The survey data indicate that the biomass of eelpouts declined in 1985 to about 5\% of their abundance in 1979. The higher biomass in 1988 suggests that this species complex may be beginning to recover. In contrast, the survey data indicate that the biomass of skates increased about sixfold from less than 100,000 t in 1979 to about 450,000 t in 1988. As in the case of flatfish, the change in trawls in 1982 may have also overemphasized the increase in abundance of this species complex.

This comparison of results from the triennial surveys demonstrate the dynamic nature of the groundfish complex in the eastern Bering Sea. Over the relatively brief 9 -year period of these surveys, major changes in abundance of several species or species groups took place. These changes often involved increases or declines in abundance on the order of four-to fivefold or greater. Although the magnitude of these fluctuations may have been exaggerated to some degree by factors such as the change in the standard survey trawls in 1982, it is clear that the abundance of many species has increased, and that the condition of the groundfish complex in the eastern Bering Sea has generally improved over the 9 -year period of the triennial surveys.

## NOTE TO READERS

As explained on page 38, the following Tables 15-45 and Figures 14-87 summarize findings from the 1988 triennial survey for the principal species and species groups of groundfish, shrimps, octopuses, and squids. The citations section follows these figures and tables.


Fi gure 14. -- Distribution and rel ative abundance of age-I and ol der walleye pollock near bottomin the eastern Bering Sea as shown by the 1988 U.S. -J apan bottomtraw survey.

```
Table 15.--Abundance estimates and mean size of walleye pollock by subarea from
```

$\text { Subarea } \begin{gathered} \text { Depth } \\ \text { interval } \\ (\mathrm{m}) \end{gathered}$	Mean CPUE (kg/ha)	Estimated biomass ( t )	Proportion of estimated biomass	Estimated population numbers	Proportion of estimated population	$\begin{gathered} \text { Mea } \\ \begin{array}{c} \text { Weight } \\ (k g) \end{array}, ~ \end{gathered}$	ze Length (cm)
Eastern Bering Sea Shelf							
$1<50$	18.78	146,232	0.019	135,637,235	0.009	1.078	51.3
$2<50$	11.02	45,193	0.006	107,132,456	0.007	0.422	24.5
3 3 $50-100$	115.10	1,188,969	0.158 1,	1,583,657,456	0.111	0.751	47.0
5 5 $500-200$	108.29	1,164,403	0.1551 ,	1,590,275,906	0.111	0.732 0.757	45.7
6 100-200	418.35	3,957,156	0.5278 ,	8,150,190,914	0.569	0.486	38.6
Subareas combined	149.37	6,922,030	0.922 12,	2,121,503,849	0.847	0.571	41.0
North Shelf							
$\begin{aligned} & 7 \\ & 8\end{aligned} 50 \leq 50$	12.48	90,886	0.012	240,808,579	0.017	0.377	26.3
8 50-200	44.80	367,399	0.049 1,	1,778,417,064	0.124	0.207	26.8
Subareas combined	29.60	458,285	0.061 2,	2,019,225,643	0.141	0.227	26.7
Slope							
$9200-500$	80.85	62,943	0.008				48.5
10 11	119.36	67,394	0.009	100,311,382	0.007	0.672	45.3
11 12	1.05 0.16	461 54	<0.001	530,556 98,053	<0.001	0.869 0.548	49.2
Subareas combined	61.91	130,851	0.017	174,309,865	0.012	0.751	46.7
All subareas combined	117.48	7,511,167	1.00014,	,315,039,358	1.000	0.525	39.1

Note: Differences in totals and suns of bi onass and population numbers by subarea are due to rounding.


Figure 15.-- Distribution and rel ative abundance of age-I and ol der walleye pollock in midwater of the eastern Bering Sea as shown by the 1988 midwater survey.

Table 16. --Abundance estimates and mean size of walleye pollock by subarea from U.S. midwater data collected during the 1988 Bering Sea survey.

Subarea	Depth interval (m)	$\begin{gathered} \text { Mean } \\ \text { density } \\ \text { (kg/ha) } \end{gathered}$	Estimated biomass ( t )	Proportion of estimated biomass	Estimated population numbers	Proportion of estimated population		$\frac{\text { size }}{\text { Length }}$
Eastern Bering Sea Shelf								
	$<50$	- ${ }^{\text {a }}$	-	-		-	-	-
2	- < 50	74						
3	$50-100$ $50-100$	74 29	500,493 195,864	0.107	851,396,672	0.069 0.035	$0.603{ }^{\text {b }}$ 0.474	$43.4{ }^{4}$
5	100-200	151	586,962	0.126	1,076,931,565	0.088	0.556	42.3
6	100-200	334	3,159,824	0.676	9,129,602,641	0.743	0.361	35.5
Suba	reas combined	166	4,443,143	0.950	11,486,510,675	-0.934	0.401	36.9
North Shelf								
7 8	$50-200$	187	147,087	0.031	636,359,804	- 0.052	0.237	30.9
Subareas combined		187	147,087	0.031	636,359,804	0.052	0.237	30.9
Slope								
	200-500	86	67,040	0.014	$\begin{array}{r} 123,573,219 \\ 45,361,746 \\ \hline \end{array}$	$\begin{aligned} & 0.010 \\ & 0.004 \end{aligned}$	$\begin{aligned} & 0.553^{b} \\ & 0.414^{b} \end{aligned}$	$42.4{ }^{\text {b }}$
	200-500	32	18,166	0.004				
	$500-800$ $500-800$					-		-
Subareas combined		63	85,206	0.018	168,934,965	0.014	0.516	41.0
All subareas combined		162	4,675,436	1.000	12,291,805,444	1.000	0.394	36.7

[^6]

174 OOE 177 OOE 180 OOW 177 OOW 174 OOW 171 OOW 168 OOW 165 OOW 162 00W 159 OOW 156 OOW

Fi gure 16. -- Distribution and rel ative abundance of age-I and ol der walleye pollock in miduater and near bottom as shown by conbi ned data fromthe 1988 bottomtraw and midwater surveys.


## WALLEYE POLLOCK (BOTTOM)

$100-200 \mathrm{~m}$



$50-100 \mathrm{~m}$


$<50 \mathrm{~m}$




Fi gure 17. -- Length conposition of walleye pollock near bot tom by subarea and depth zone as shown by data from the 1988 U. S-Japan bottomtraw survey.


Figure 18. --Length composition of walleye pollock in midwater by subarea and bottom depth zone as shown by data from the 1988 midwater survey.

56


Fi gure 19. -- Popul ation number estimates by centimeter length interval for walleye pollock near bottomin the eastern Bering Sea as shown by the 1988 U. S. -J apan bottomtraw survey.


Figure 20. --Population estimates by centimeter length interval for walleye pollock in the eastern Bering Sea from the 1988 bottom trawl and midwater surveys and from combined data.

Table 17 .--Estimated population numbers (millions of fish) of walleye pollock near bottom by age group and subarea as shown by combined age and length data from the 1988 bottom trawl survey.

Depth and subarea															
Age Year   class		500-800 m		200-500 m		$\frac{50-200 \mathrm{~m}}{8}$	$\frac{<50 \mathrm{~m}}{7}$	100-200 m		50-100 m		< 50 m		All subareas combined	Proportion of total
		12	11	10	9			6	5	4	3	2	1		
1	1987	0.00	0.00	0.00	0.00	969.90	173.54	617.77	1.17	95.45	63.68	72.30	16.22	2,010.04	0.140
2	1986	0.00	0.00	0.00	0.00	46.90	7.94	520.03	0.74	9.24	6.74	0.02	1.21	592.82	0.041
3	1985	0.01	0.03	15.41	4.39	72.07	0.00	990.77	26.01	63.77	51.10	0.03	0.84	1,224.43	0.085
4	1984	0.04	0.03	14.69	4.75	148.63	0.00	1.814.16	56.31	148.58	129.62	0.03	0.92	2,317.73	0.162
5	1983	0.01	0.03	9.56	3.89	59.35	0.00	712.32	44.15	98.31	97.08	0.03	1.22	1,025.95	0.072
6	1982	0.04	0.18	42.10	27.20	220.71	0.24	2,156.34	158.43	386.98	398.47	0.20	6.72	3,397.62	0.237
7	1981	0.01	0.03	4.12	5.51	64.40	0.50	562.99	61.50	152.44	156.87	0.20	4.77	1,013.33	0.071
8	1980	$<0.01$	0.02	1.93	4.42	50.98	2.27	316.28	60.45	166.29	179.85	0.91	14.65	798.05	0.055
9	1979	$<0.01$	0.03	2.41	3.39	37.41	2.81	143.88	42.59	113.55	118.44	1.18	11.93	477.63	0.033
10	1978	0.01	0.14	8.76	17.21	88.58	32.89	271.82	91.13	296.74	320.92	14.87	57.44	1,200.52	0.084
11	1977.	$<0.01$	0.01	0.29	0.77	. 8.49	8.55	22.20	7.51	29.95	30.08	4.31	8.40	120.54	0.008
12	1976	0.00	0.01	0.00	0.02	4.80	4.52	11.88	3.40	16.86	21.04	2.43	5.82	70.77	0.005
13	1975	$<0.01$	0.01	0.34	0.71	0.63	2.45	2.81	0.21	2.83	3.45	1.01	1.93	16.38	0.001
14	1974	0.00	$<0.01$	0.03	0.11	0.94	0.50	5.00	0.99	4.12	3.96	0.50	0.98	17.13	0.001
15	1973	0.00	0.01	0.40	0.90	0.22	0.43	0.33	0.00	0.48	0.62	0.20	0.37	3.95	$<0.001$
16	1972	0.00	0.00	0.00	0.00	0.68	0.65	0.28	0.03	0.99	1.01	0.17	0.61	4.43	$<0.001$
17	1971	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.000
18	1970	0.00	0.00	0.00	0.00	0.22	0.36	0.37	0.00	0.42	0.29	0.15	0.31	2.13	$<0.001$
Age	known	0.01	0.00	0.27	0.11	0.00	3.15	0.97	0.00	3.28	0.45	8.59	1.29	21.59	0.001
All comb		0.10	0.53	100.31	73.37	1,778.42	240.81	8,150.19	554.61	1,590.28	1,583.66	107.13	135.64	14,315.04	1.000

Note: Differences in SUMS of estimates by subarea or age and total s are due to rounding.


Fi gure 21.-- Popul ation estinates by age for walleye pollock near bottom as shown by age and length data fromthe 1988 bottomtraw survey of the eastern Bering Sea.

Table l\&I.--Estimated population numbers (millions of fish) of walleye pollock in midwater by age group and subarea as shown by age and length data from the 1988 midwater survey.

Age	Year   class	Depth and subarea												All subareas combined	Proportion of total
		500-800 m		200-500 m		$\begin{gathered} \frac{50-200 \mathrm{~m}}{8} \end{gathered}$	$\qquad$   $7^{n}$	$\cdots 10$	0-200 m		00 m				
		$12^{8}$	$11^{\circ}$	$10^{\text {b }}$	$9^{\text {b }}$			6	5	4	$3^{\text {b }}$	$2^{3}$	$1{ }^{0}$		
1	1987			0.00	0.00	0.00		10.85	0.00	0.00	0.00			10.85	0.001
2	1986			0.98	0.00	154.17		956.50	0.00	0.27	0.00			1111.93	0.090
3	1985			12.50	53.76	229.86		2423.19	470.43	60.58	335.37			3585.69	0.292
4	1984			19.07	23.10	191.70		3143.49	196.55	149.18	141.23			3864.34	0.314
5	1983			2.70	5.39	26.38		584.28	46.17	41.19	33.30			739.41	0.060
6	1982			4.08	25.45	27.90		1315.91	213.23	125.40	169.70			1881.68	0.153
7	1981			1.19	5.68	3.98		278.21	46.28	25.87	42.16			403.36	0.033
8	1980			0.44	2.40	1.58		101.29	18.90	9.71	17.03			151.35	0.012
9	1979			0.70	2.92	0.15		64.26	24.89	3.98	32.63			129.53	0.011
10	1978			1.85	3.58	0.50		147.73	40.04	8.79	52.04			254.52	0.021
11	1977 1976	-		0.40	1.11	0.05		24.49	10.27	0.89	12.82			50.04	0.004
12 13	1976 1975			0.62	0.00	0.05		34.04	0.00	1.08	0.00			35.79	0.003
13	1975 1974			0.12	0.00	0.00		6.69	0.00	0.21	0.00			7.01	0.001
14 15	1974			0.38	0.00	0.00		19.67	0.00	0.83	0.00			20.88	0.002
15 16	1973 1972			0.24	0.00	0.03		14.60	0.00	0.45	0.00			15.32	0.001
17	1972 1971			0.05	0.19 0.00	0.00 0.00		2.46 1.93	10.16 0.00	0.12 0.03	15.12 0.00			28.10	0.002
								1.93	0.00	0.03	0.00			2.00	<0.001
All ages combined															
				45.36	123.57	636.36		9129.60	1076.93	428.58	851.40			12291.81	1.00

a Subarea not sampl ed during the 1988 midwater survey.
${ }^{b}$ Traw sampl es were not taken in these areas. Biological information is based on the closest samples taken in adjacent areas. Note: Differences in suns of estimates by subarea or age and totals are due to rounding.


Fi gure 22.-- Popul ation estimates by age for walleye pollock in midwater as shown by age and length data fromthe 1988 miduater survey in the eastern Bering Sea.

Table lg.--Estimated population numbers (millions of fish) of walleye pollock near bottom and in midwater by age group and subarea as shown by combined age and length data from the 1988 bottom trawl and midwater survey.


Note: Differences in suns of estimates by subarea or age and totals are due to rounding.


Fi gure 23.--Popul ation estimates by age for walleye pollock near bottom in miduater, and for the overall sampl ed popul ation as shown by age and Iength data fromthe 1988 bottomtraw and midwater surveys.


Figure 24.--Von Bertalanffy growth curves for male and female walleye pollock as shown by age data from the 1988 U.S. bottom trawl survey.

Table 20. --Parameters of the von Bertalanffy growth curves for walleye pollock by sex based on age readings from otoliths and length data from the 1988 U.S. bottom trawl survey. Parameters for unselected ages were derived from all age readings and those for selected ages from ages with five or more observations.

Data	Sex	Number of age readings	Age range	Length   range   (cm)	Parameters		
					$\mathrm{L}_{\text {inf }}$	K	$t_{0}$
Unselected	Male	665	1-15	10-72	63.5	0.20	-0.42
	Female	706	1-18	10-79	72.6	0.16	-0.69
Selected	Male	659	1-12	10-72	63.6	0.20	-0.42
	Female	699	1-13	10-79	74.5	0.15	-0.81



Fi gure 25.-- Distribution and rel ative abundance of Pacific codin the eastern Bering Sea as shown by the 1988 U. S. -J apan bottomtraw survey.

```
Table 21. --Abundance estimates and mean size of Pacific cod by subarea from
 the 1988 U.S. -Japan bottom trawl surveys in the eastern Bering Sea.
```

SubareaDepth   interval   (m)	Mean CPUE (kg/ha)	Estimated biomass ( t )	Proportion of estimated biomass	Estimated population numbers	Proportion of estimated population	$\begin{gathered} \text { Meal } \\ \underset{(\mathrm{kg})}{\mathrm{We})^{\text {ght }}} \end{gathered}$	ize   ze   Length (cm)
Eastern Bering Sea Shelf							
$1<50$	14.43	112,330	0.107	68,618,090	0.126	1.637	47.2
$<50$	9.24	37,913	0.036	21,783,388	0.040	1.740	51.0
3 4	23.66	244,401	0.234	139,243, 229	0.252	1.780	49.8
$5100-200$	26.14	101,393	0.097	26,403,'835	0.048	$\frac{1}{3.840}$	42.4 64.6
$6100-200$	31.51	298,069	0.285	105,'997,613	0.194	2.812	57.9
Subareas combined	20.71	959,544	0.917	509,336,483	0.934	1.884	49.8
North Shelf							
$7 \quad 50 \leq 50$	5.84	42,520	0.041	21,714,107	0.040	1.958	48.0
8 50-200	4.27	35,011	0.033	11,926,801	0.022	2.936	55.3
Subareas combined	5.01	77,532	0.074	33,640,908	0.062	2.305	50.6
Slope							
$9200-500$	2.28	1,777	0.002	617,436	0.001	2.878	59.8
	13.12	7,410	0.007	1,556,324	0.003	4.761	70.9
$\begin{aligned} & 11 \\ & 12\end{aligned} 500-800-800$	$0.49{ }^{\circ}$	214 0	$<0.001$	65,595	<0.001	3.259	65.1
Subareas combined	4.45	9,400	0.009	2,239,355	0.004	4.198	67.7
All subareas combined	16.37	1,046,476	1.000	545,216,747	1.000	1.919	49.9

## ${ }^{\text {a }}$ O ì ndi cates fishing but no catch. <br> i ndi cates no catch or no sample. <br> Note: Differences in totals and suns of bi onass and population numbers by subarea are due to roundi ng.



200-500m








## PACIFIC COD

$50-100 \mathrm{~m}$



Figure 26. --Length composition of Pacific cod by subarea and depth zone as shown by data from the 1988 U.S.-Japan bottom trawl survey.


Fi gure 27.-- Popul ation number estimates by centi neter I ength interval for Pacific cod in the eastern Bering Sea as shown by data fromthe 1988 U. S. -J apan bottom traw survey.

Table 22 .--Estimated population numbers (millions of fish) of Pacific cod by age group and subarea as shown by age and length data from the 1988 bottom trawl survey of the eastern Bering Sea.

Depth and subarea															
Age	Year class	500-800 m		200-500 m		$\frac{50-200 \mathrm{~m}}{8}$	$\frac{<50 \mathrm{~m}}{7}$	100-200 m		50-100 m		< 50 m		All subareas combined	Proportion of total
		12	11	10	9			6	5	4	3	2	1		
1	1987	0.00	0.00	0.00	0.00	0.91	1.47	0.60	0.00	21.08	2.65	1.53	4.65	32.89	0.060
2	1986	0.00	0.00	0.00	$<0.01$	0.67	3.62	3.24	0.33	27.56	16.91	1.78	10.37	32.89 64.48	0.060 0.118
3	1985	0.00	$<0.01$	0.01	0.02	1.01	3.27	12.90	1.57	35.44	33.52	3.81	18.07	109.60	0.201
4	1984	0.00	0.01	0.13	0.16	2.13	2.70	25.80	3.95	32.44	37.92	5.42	14.49	125.16	0.230
5	1983	0.00	0.02	0.39	0.23	2.23	4.38	29.65	6.35	19.76	22.89	5.12	7.40	98.41	0.180
6	1982	0.00	0.01	0.23	0.10	0.61	1.49	13.07	3.63	4.51	6.84	1.62	3.18	35.31	0.065
7	1981	0.00	0.02	0.20	0.08	0.78	0.59	7.89	2.78	2.48	5.19	0.80	2.12	22.91	0.042
8	1980	0.00	$<0.01$	0.12	0.02	0.57	0.48	4.33	2.44	1.28	3.59	0.55	1.49	14.88	0.027
9	1979	0.00	0.01	0.09	0.01	0.41	0.36	2.31	1.74	0.95	2.51	0.27	1.08	14.88 9.71	0.018
10	1978	0.00	$<0.01$	0.04	$<0.01$	0.23	0.08	1.00	1.02	0.27	0.98	0.16	0.76	4.56	0.008
11	1977	0.00 0.00	0.00 0.00	0.07 0.02	<0.01	0.63	0.16	1.52	1.32	0.51	1.66	0.23	0.92	7.01	0.013
13	1975	0.00	0.00 0.00	0.02	$<0.01$ $<0.01$	0.20	0.11 0.00	0.37	0.32	0.14	0.24	0.03	0.18	1.62	0.003
14	1974	0.00	0.00	0.00	0.00	0.00	0.04	0.27	0.04 0.08	0.01	0.05 0.09	0.00 0.07	0.07 0.17	0.32 0.73	0.001 0.001
Age	known	0.00	0.00	0.26	$<0.01$	1.55	2.96	2.96	0.84	2.77	2.25	0.39	3.66	17.64	0.032
All Comb		0.00	0.07	1.56	0.62	11.93	21.71	106.00	26.40	149.24	137.29	21.78	68.62	545.22	1.000

71


Figure 28. --Population estimates by age for Pacific cod as shown by age and length data from the 1988 bottom trawl survey of the eastern Bering Sea.


Fi gure 29. -- Von Bertal anffy grouth curves for nale and fenale Pacific cod as shown by age data fromthe 1988 U.S. bottomtraw survey.

Table 23. --Parameters of the von Bertalanffy growth curves for Pacific cod by sex based on age readings from otoliths and length data from the 1988 U.S. bottom trawl survey. Parameters for unselected ages were derived from all age readings and those for selected ages from ages with five or more observations.

Data	Sex	Number of age readings	Age range	Length range (cm)	Parameters		
					$\mathrm{L}_{\text {inf }}$	K	$\mathrm{t}_{\text {。 }}$
Unselected	Male	316	1-12	16-93	95.9	0.16	-0.54
	Female	323	1-14	14-90	97.7	0.16	-0.57
Selected	Male	310	1-11	16-93	100.1	0.15	-0.60
	Female	316	1-11	14-90	104.5	0.14	-0.74



Fi gure 30.-- Distribution and rel ative abundance of sablefish in the eastern Bering Sea as shown by the 1988 U. S. -Japan bottomtraw survey.

Table 24. --Abundance estimates and mean size of sablefish by subarea from the 1988 U.S.-Japan bottom trawl surveys in the eastern Bering Sea.


## ${ }^{\text {a }} \mathbf{O}$ indi cates fishi ng but no catch. <br> i ndi cates no catch or no sample.

Note: Differences in total $s$ anof suns of bi onass and population numbers by subarea are due to rounding.


Fi gure 31.-- Length composition of sabl efish by subarea and depth zone as shown by data fromthe 1988 U. S. -J apan bottom traw survey.


Fi gure 32.-- Popul ation number estimates by centimeter length interval for sabl efish in the eastern Bering Sea as shown by data fromthe 1988 U. S. -J apan bottom traw survey.


```
Table 25. --Abundance estimates and mean size of Pacific ocean perch by subarea from
 the 1988 U.S.-Japan bottom trawl surveys in the eastern Bering Sea.
```



## O indicates fishing but no catch.

Note: Differences in total sand suns of bi onass and population numbers by subarea are due to rounding.

$500-800 \mathrm{~m}$




## PACIFIC OCEAN PERCH



< 50 m






Figure 34.--Length composition of Pacific Ocean perch by subarea and depth zone as shown by data from the 1988 U.S.-Japan bottom trawl survey.


Fi gure 35. -- Popul ation number esti nates by centi neter length interval for Pacific Ocean perch in the eastern Bering Sea as shown by data fromthe 1988 U. S. -J apan bottom traw survey.


Fi gure 36.-- Distribution and rel ative abundance of ot her rockfish in the eastern Bering Sea as shown by the 1988 U. S.-Japan bottomtraw survey.
 rockfish by subarea from the 1988 U.S. bottom trawl surveys of the Bering Sea slope.

SubareaDepth   interval   (m)	Mean CPUE (kg/ha)	Estimated biomass ( t )	Proportion of estimated biomass	Estimated population numbers	Proportion of estimated population	$\begin{gathered} \text { Mea } \\ \underset{(\mathrm{kg})}{\mathrm{Weight}} \end{gathered}$	$\frac{\text { ize }}{\substack{\text { Length } \\(\mathrm{cm})}}$
Rougheye rockfish							
$9200-500$	0.37	288	0.329	361,135	0.380	0.797	32.9
$10 \quad 200-500$	0.61	345	0.394	240, 139	0.253	1.437	43.7
11 500-800	0.52	230	0.263	299,959	0.316	0.766	33.7
12 500-800	0.04	13	0.015	49,418	0.052	0.272	30.3
Subareas combined	0.41	876	1.000	950,652	1.000	0.922	35.8
Shortraker rockfish							
$9200-500$	0.73	566	0.449	263,433	0.538	2.148	42.6
10 200-500	0.08	43	0.034	11,427	0.023	3.742	60.5
$115500-800$	1.32	579	0.460	138,101	0.282	4.193	57.8
12 500-800	0.22	72	0.057	76,681	0.157	0.940	34.1
Subareas combined	0.60	1,260	1.000	489,642	1.000	2.573	46.0
Northern rockfish							
Shelf subareas	0.11	7,009	0.999	10,366,235	0.999	0.676	34.1
Slope subareas	$<0.01$	4	0.001	10,973	0.001	0.408	-
All subareas combined	0.11	7,014	1.000	10,377,209	1.000	0.676	34.1

Note: Differences in totals and suns of bionss and popul ation numbers by subarea are due to rounding.


Figure 37.--Population number estimates by centimeter length interval for rougheye rockfish and shortraker rockfish in the eastern Bering Sea as shown by data from the 1988 U.S.-Japan bottom trawl survey.


Fi gure 38.-- Distribution and rel ative abundance of thornyhead rockfish in the eastern Bering Sea as shown by the 1988 U.S.-J apan bottomtraw survey.

Table 27 .--Abundance estimates and mean size of shortspine thornyhead rockfish by subarea from the 1988 U.S. -Japan bottom trawl surveys in the eastern Bering Sea.

SubareaDepth   interval   (m)		Estimated biomass ( t )	Proportion of estimated biomass	Estimated population numbers	Proportion of estimated population	$\underset{\substack{\text { Mean } \\(\mathrm{kg})}}{\text { Mean }}$	$\frac{\text { ize }}{\substack{\text { Length } \\(\mathrm{cm})}}$
Eastern Bering Sea Shelf							
$\begin{array}{rr}1 & <50 \\ 2 & <50 \\ 3 & 50-100 \\ 4 & 50-100 \\ 5 & 100-200 \\ 6 & 100-200\end{array}$	0a 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	$-b$ - - -	-
Subareas combined	0	0	0	0	0	-	-
North Shelf							
$\begin{array}{ll} 7 & <50 \\ 8 & 50-200 \end{array}$	0	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	0 0	0	-	-
Subareas combined	0	0	0	0	0	-	-
Slope							
$\begin{array}{rr}9 & 200-500 \\ 10 & 200-500 \\ 11 & 500-800 \\ 12 & 500-800\end{array}$	1.08 0.17 8.12 2.10	841 97 3,565 696	0.162 0.019 0.686 0.134		0.365 0.013 0.556 0.066	0.347 1.082 0.964 1.589	26.3 38.6 39.3 45.3
Subareas combined	2.46	5,199	1.000	6,651,237	1.000	0.782	35.0
All subareas combined	0.08	5,199	1.000	6,651,237	1.000	0.782	35.0

## ${ }^{\text {a }} \mathrm{O}$ indicates fishing but no catch. <br> - i ndi cates no catch or no sample.

Note: Differences in total $s$ and suns of bi onass and population numbers by subarea are due to rounding.


Fi gure 39. -- Popul ation number estimates by centi meter I ength interval for thornyhead rockfish in the eastern Bering Sea as shown by data fromthe 1988 U. S. -J apan bottom traw survey.


Figure 40.--Distribution and relative abundance of yellowfin sole in the eastern Bering Sea as shown by the 1988 U.S.-Japan bottom trawl survey.

```
Table 28. --Abundance estimates and mean size of yellowfin sole by subarea from
 the 1988 U.S.-Japan bottom trawl surveys in the eastern Bering Sea.
```

$\text { Subarea } \begin{gathered} \text { Depth } \\ \text { interval } \\ (\mathrm{m}) \end{gathered}$	Mean CPUE (kg/ha)	Estimated biomass ( t )	Proportion of estimated biomass	Estimated population numbers	Proportion of estimated population	$\underset{(\mathrm{kg})}{\text { Weight }}$	$\begin{aligned} & \text { Lee } \\ & (\mathrm{cm}) \end{aligned}$
Eastern Bering Sea Shelf							
$1<50$	167.37	1,303,331	0.4255	780,577,311	0.444	0.225	25.1
$2<50$	86.05	1,353,022	0.115 2,	347, 495,628	0.180	0.150	21.2
3 50-100	91.45	944,667	0.3082	979,211,558	0.229	0.317	29.2
$4 \quad 50-100$	23.50	253,421	0.083	785,672,874	0.060	0.323	28.7
$5100-200$	$0^{\text {a }}$	253, 0	0 0.081	-550,964	-0.001		
6 100-200	0.01	121	$<0.001$	550,964	$<0.001$	0.220	27.0
Subareas combined	61.60	$2,854,562$	0.93011	893,508,335	0.913	0.240	25.6
North Shelf							
	23.90	174,027	0.057	005,405,108	0.077	0.173	22.3
$850-200$	4.97	40,798	0.013	130,814,577	0.010	0.312	27.9
Subareas combined	13.87	214,825	0.070	136,219,685	0.087	0.189	22.9
Slope							
$9200-500$	0	0	0	0	0	-	-
10 200-500	0	0	0	0	0	-	-
11-500-800	0	0	0	0	0	-	-
12 - $500-800$	0	0	0	0	0	-	-
Subareas combined	0	0	0	0	0	-	-
All subareas combined	$48.013,069,387$		$1.00013,029,728,020$		1.000	0.236	25.4

${ }^{\text {a }} \mathrm{O}$ indicates fishing but no catch.
Note: Differences in totals and suns of bi onass and population numbers by subarea are due to roundi ng.



## YELLOWFIN SOLE



50-100m


$<50 \mathrm{~m}$




15 SUBAREA 2



Figure 41. --Length composition of yellowfin sole by subarea and depth zone as shown by data from the 1988 U.S.-Japan bottom trawl survey.


Fi gure 42. -- Popul ation number estimates by centimeter length interval for yelloufin sole in the eastern Bering Sea as -shown by data from the 1988 U.S.-Japan bottom traw survey.

Table 29 .--Estimated population numbers (millions of fish) of yellowfin sole by age groups and subarea as shown by age and length data from the 1988 bottom trawl survey in the eastern Bering Sea.

Age	Depth and subarea												All subareas combined	Proportion of total
	500-800 m		200-500 m		$\frac{50-200 \mathrm{~m}}{8}$	$\frac{<50 \mathrm{~m}}{7}$	100-200 m		50-100 m		< 50 m			
	12	11	10	9			6	5	4	3	2	1		
11987	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.000
21986	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.84	0.84	$<0.001$
31985	0.00	0.00	0.00	0.00	0.00	0.28	0.00	0.00	0.00	0.00	0.42	3.59	4.29	$<0.001$
41984	0.00	0.00	0.00	0.00	0.00	3.25	0.00	0.00	0.00	0.00	6.78	25.24	35.27	0.003
51983	0.00	0.00	0.00	0.00	1.54	115.18	0.00	0.00	4.27	6.23	324.31	447.78	899.31	0.069
$6 \quad 1982$	0.00	0.00	0.00	0.00	0.97	22.50	0.00	0.00	3.00	4.25	55.38	71.10	157.20	0.012
71981	0.00	0.00	0.00	0.00	27.06	440.92	0.00	0.00	114.51	268.12	1,106.66	1,507.73	3,465.00	0.266
81980	0.00	0.00	0.00	0.00	19.46	158.87	0.28	0.00	115.51	381.77	306.36	720.34	1,702.59	0.131
91979	0.00	0.00	0.00	0.00	14.12	55.39	0.11	0.00	121.08	486.80	108.89	554.91	1,341.30	0.103
101978	0.00	0.00	0.00	0.00	2.79	5.58	0.11	0.00	29.46	141.44	16.32	131.66	327.36	0.025
$11 \quad 1977$	0.00	0.00	0.00	0.00	6.03	15.11	0.00	0.00	42.65	186.87	36.12	235.14	521.92	0.040
121976	0.00	0.00	0.00	0.00	6.62	9.53	0.06	0.00	50.94	189.82	30.64	175.27	462.88	0.036
131975	0.00	0.00	0.00	0.00	5.34	15.38	0.00	0.00	33.72	160.19	35.57	235.13	485.33	0.037
141974	0.00	0.00	0.00	0.00	9.47	31.02	0.00	0.00	60.33	281.63	65.13	414.44	862.03	0.066
151973	0.00	0.00	0.00	0.00	6.92	17.33	0.00	0.00	40.85	192.63	47.07	267.05	571.85	0.044
$16 \quad 1972$	0.00	0.00	0.00	0.00	4.60	7.41	0.00	0.00	29.57	113.53	22.92	124.78	302.81	0.023
171971	0.00	0.00	0.00	0.00	4.53	10.77	0.00	0.00	24.96	110.94	28.82	170.96	350.97	0.027
181970	0.00	0.00	0.00	0.00	2.93	10.48	0.00	0.00	18.73	87.02	23.09	128.07	270.33	0.021
191969	0.00	0.00	0.00	0.00	4.15	22.80	0.00	0.00	24.02	93.71	34.42	143.21	322.31	0.025
201968	0.00	0.00	0.00	0.00	4.40	15.33	0.00	0.00	18.17	88.93	26.16	144.30	297.29	0.023
211967	0.00	0.00	0.00	0.00	3.87	12.98	0.00	0.00	10.87	60.86	22.26	123.53	234.37	0.018
221966	0.00	0.00	0.00	0.00	4.19	16.71	0.00	0.00	29.31	95.97	28.89	112.34	287.41	0.022
231965	0.00	0.00	0.00	0.00	1.28	9.62	0.00	0.00	5.54	15.15	10.65	22.73	64.97	0.005
241964	0.00	0.00	0.00	0.00	0.34	4.94	0.00	0.00	5.51	8.69	7.34	14.56	41.37	0.003
251963	0.00	0.00	0.00	0.00	0.14	1.37	0.00	0.00	1.87	3.69	1.58	3.78	12.42	0.001
>25 1962	0.00	0.00	0.00	0.00	0.06	0.85	0.00	0.00	0.82	0.98	1.48	2.07	6.25	0.001
Age unknown	0.00	0.00	0.00	0.00	0.00	1.82	0.00	0.00	0.00	0.00	0.21	0.00	2.03	$<0.001$
All ages combined	0.00	0.00	0.00	0.00	130.811	1,005.41	0.55	0.00	785.67	2,979.21	2,347.50	5,780.58	13,029.73	1.00

Note: Differences in suns of estimates by subarea or age and totals are due to roundi ng.



Age (years)

Fi gure 43.-- Popul ation estimates by age for yelloufin sole as shown by age and length data from the 1988 bottomtraw survey of the eastern Bering Sea.


Figure 44. --Von Bertalanffy growth curves for male and female yellowfin sole as shown by age data from the 1988 U.S. bottom trawl survey.

Table 30. --Parameters of the von Bertalanffy growth curves for yellowfin sole by sex based on age readings from otoliths and length data from the 1988 U.S. bottom trawl survey. Parameters for unselected ages were derived from all age readings and those for selected ages from ages with five or more observations.

Data	Sex	Number of age readings	Age range (years)	Length range (cm)	Parameters		
					$\mathrm{L}_{\text {inf }}$	K	t。
Unselected	Male	275	3-23	9-37	35.0	0.15	1.46
	Female	369	2-31	7-44	38.4	0.15	2.07
Selected	Male	251	4-21	10-37	35.2	0.16	1.63
	Female	352	4-22	10-44	37.6	0.17	2.44



Figure 45.--Distribution and relative abundance of rock sole in the eastern Bering Sea as shown by the 1988 U.S.-Japan bottom trawl survey.

Table 31.--Abundance estimates and mean size of rock sole by subarea from the 1988 U.S.-Japan bottom trawl surveys in the eastern Bering Sea.

SubareaDepth   interval   $(\mathrm{m})$	Mean CPUE (kg/ha)	Estimated biomass ( t )	Proportion of estimated biomass	Estimated d population numbers	Proportion of estimated population	$\begin{gathered} \text { Mean } \\ \begin{array}{c} \text { Weight } \\ (\mathrm{kg}) \end{array}, ~ \end{gathered}$	$\begin{gathered} \frac{\text { ize }}{\text { Length }} \\ \text { (cm) } \end{gathered}$
Eastern Bering Sea Shelf							
$1<50$	112.77	878,172	0.459	5,452,373,675	0.525	0.161	21.6
$2<50$	27.81	114,095	0.060	669,611,088	0.064	0.170	20.4
$3 \quad 50-100$	57.16	590, 458	0.3083	3,003,752,677	0.289	0.197	24.4
$4 \quad 50-100$	24.65	265; 793	0.139	979,954,357	0.094	0.271	27.1
$\begin{array}{ll}5 & 100-200 \\ 6 & 100-200\end{array}$	0.94 5.43	3,633 51,393	0.027	113,432, 031	0.0011	0.595	36.0 32.0
Subareas combined	$41.081,903,544$		$0.99410,225,231,072$		0.984	0.186	23.0
North Shelf							
$7<50$	0.82	5,941	0.003	142,958,716	0.014	0.042	12.7
8 50-200	0.64	5,240	0.003	23,230,064	0.002	0.226	22.9
Subareas combined	0.72	11,181	0.006	166,188,780	0.016	0.067	14.1
Slope							
	$<0.01$		$<0.001$	4,235	$<0.001$	0.181	- -
$\begin{array}{ll}10 & 200-500 \\ 11 & 500-800 \\ \text { 1 }\end{array}$	$0.03{ }^{\text {a }}$	16	<0.001 0	27,070	$<0.001$	0.580	
12 12	0	0	0	0	0	-	-
Subareas combined	0.01	16	<0.001	31,305	<0.001	0.526	-
All subareas combined	29.95	1,914,741	1.00010	10,391,451,157	1.000	0.184	22.9

## ${ }^{*} 0$ indicates fishing but no catch.

- indicates no catch or no sample.

Note: Differences in totals and sums of biomass and population numbers by subarea are due to rounding.


Figure 46.--Length composition of rock sole by subarea and depth zone as shown by data from the 1988 U.S.-Japan bottom trawl survey.


Fi gure 47.-- Popul ation number estimates by centineter length interval for rock sole in the eastern Bering Sea as shown by data fromthe 1988 U.S. -J apan bottom traw survey.

Table 32 .--Estimated population numbers (millions of fish) of rock sole by age group and subarea as shown by age and length data from the 1988 bottom trawl survey of the eastern Bering Sea.

Age	Year class	Depth and subarea												All subareas combined	Proportion of total
		500-800 m		200-500 m		$\frac{50-200 \mathrm{~m}}{8}$	$\frac{<50 \mathrm{~m}}{7}$	100-200 m		50-100 m		< 50 m			
		12	11	10	9			6	5	4	3	2	1		
1	1987	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.000
2	1986	0.00	0.00	0.00	0.00	1.49	41.04	0.00	0.00	6.85	25.06	91.99	262.65	429.08	0.041
3	1985	0.00	0.00	0.00	0.00	3.52	72.23	0.47	0.00	38.05	139.13	167.92	990.55	1,411.85	0.136
4	1984	0.00	0.00	0.00	0.00	3.89	14.09	0.66	0.00	79.86	513.89	97.36	1,168.62	1,878.37	0.181
5	1983	0.00	0.00	0.00	0.00	4.35	6.03	11.73	0.22	228.71	868.05	96.76	1,254.09	2,469.94	0.238
6	1982	0.00	0.00	0.00	0.00	2.48	1.58	14.92	0.47	155.39	522.50	39.56	510.46	1,247.35	0.120
7	1981	0.00	0.00	0.00	0.00	3.00	2.16	21.69	0.43	180.40	454.39	49.50	468.75	1,180.33	0.114
8	1980	0.00	0.00	0.00	0.00	1.70	1.74	19.02	0.63	107.09	187.23	39.61	288.74	645.76	0.062
9	1979	0.00	0.00	0.00	0.00	1.11	0.88	12.08	0.70	65.41	121.71	21.73	169.86	393.49	0.038
10	1978	0.00	0.00	0.00	0.00	0.27	0.18	3.05	0.23	14.05	20.34	5.32	41.53	84.96	0.008
11	1977	0.00	0.00	0.00	0.00	0.54	0.56	7.21	1.15	32.88	56.94	13.84	96.30	209.41	0.020
12	1976	0.00	0.00	0.00	0.00	0.26	0.27	4.00	0.40	17.27	34.22	8.06	48.93	113.42	0.011
13	1975	0.00	0.00	0.00	0.00	0.27	0.29	4.17	0.27	13.81	15.12	8.73	46.31	88.96	0.009
14	1974	0.00	0.00	0.00	0.00	0.09	0.15	4.18	0.40	12.09	14.48	6.34	36.21	73.94	0.007
15	1973	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.000
16	1972	0.00	0.00	0.00	0.00	0.00	0.03	0.28	0.11	1.27	1.83	0.42	4.24	8.18	0.001
17	1971	0.00	0.00	0.00	0.00	0.02	0.00	0.57	0.19	2.70	1.55	1.39	7.63	14.05	0.001
18	1970	0.00	0.00	0.00	0.00	0.22	0.10	4.61	0.44	13.71	16.20	8.84	30.96	75.09	0.007
19	1969	0.00	0.00	0.00	0.00	0.02	0.04	0.81	0.25	5.13	8.54	2.40	12.64	29.83	0.003
20	1968	0.00	0.00	0.00	0.00	0.00	0.03	0.71	0.22	1.81	1.98	0.98	4.64	10.36	0.001
> 20		0.00	0.00	0.00	0.00	0.01	0.02	0.52	0.00	1.67	0.20	1.13	4.16	7.71	0.001
Age	known	0.00	0.00	0.03	$<0.01$	0.00	1.53	2.76	0.00	1.79	0.42	3.94	5.09	19.33	0.002
All   Comb		0.00	0.00	0.03	80.00	23.23	142.96	113.43	6.11	979.95	3,003.75	669.61	5,452.37	10,391.42	1.000

Note: Differences in suns of estimates by subarea or age and totals are due to rounding.


Fi gure 48. -- Popul ation estimates by age for rock sol e as shown by age and length data from the 1988 bottomtraw survey of the eastern Bering Sea.


Figure 49. --Von Bertalanffy growth curves for male and female rock sole as shown by age data from the 1988 U.S. bottom trawl survey.

Table 33. --Parameters of the von Bertalanffy growth curves for rock sole by sex based on age readings from otoliths and length data from the 1988 U.S. bottom trawl survey. Parameters for unselected ages were derived from all age readings and those for selected ages from ages with five or more observations.

Data	Sex	Number of age readings	Age range	Length range (cm)	Parameters		
					$\mathrm{L}_{\text {inf }}$	K	$t_{\text {。 }}$
Unselected	Male	122	2-19	8-35	36.1	0.24	1.01
	Female	228	2-23	7-45	43.5	0.20	1.16
Selected	Male	111	2-9	8-35	48.0	0.14	0.57
	Female	219	2-18	7-45	44.5	0.19	1.10



Table 34.--Abundance estimates and mean size of flathead sole by subarea from the 1988 U.S. -Japan bottom trawl surveys in the eastern Bering Sea.

SubareaDepth   interval   $(\mathrm{m})$	Mean (kg/ha)	Estimated biomass ( t )	Proportion of estimate biomass	Estimated d population numbers	Proportion of estimated population	$\begin{gathered} \text { Mea } \\ \begin{array}{c} \text { Meight } \\ (\mathrm{kg}) \end{array} \end{gathered}$	ize   Length (cm)
Eastern Bering Sea Shelf							
$1<50$	1.76	13,667	0.022	41,555,947	0.014	0.329	29.5*
2 - 5050	0.15	${ }^{2} 1628$	0.001	608,213,876	0.001	0.234	31.2
$\begin{aligned} & 3 \\ & 4\end{aligned} 50-100$	19.31	201,515	0.076	297,505,250	0.099	0.158	24.0
5 100-200	25.41	98,571	0.159	672,676,607	0.224	0.147	22.9
6 - $100-200$	20.74	196,218	0.317	784,856,722	0.261	0.250	25.9
Subareas combined	12.03	557,484	0.901	2,407,341,974	0.801	0.232	26.2
North Shelf							
$7<50$	0.65	4,726	0.008	537,168,971	0.012 0.179	0.127 0.085	19.2
8 50-200	5.60	45,946	0.074	539,126,939	0.179	0.085	18.7
Subareas combined	3.27	50,672	0.082	576,295,910	0.192	0.088	18.7
Slope							
$9200-500$	11.36	8,842	0.014	17,491,007	0.006	0.506	35.8
10 200-500	3.13	1,769	0.003	5,689,147	-0.002	0.311	32.8 38.9
$\begin{array}{ll}11 & 500-800 \\ 12 & 500-800\end{array}$	0.26 $<0.01$	116 1	$<0.001$ $<0.001$	166,965 1,467	<0.001	0.6907	41.0
Subareas combined	5.08	10,728	0.017	23,348,587	0.008	0.459	35.1
All subareas combined	9.68	618,884	1.000	3,006,986,471	1.000	0.206	24.8

## - i ndi cates no catch or no sample.

Note: Differences in totals and suns of bi onass and popul ation numbers by subarea are due to rounding.





## FLATHEAD SOLE




< 50 m




Figure 51. --Length composition of flathead sole by subarea and depth zone as shown by data from the 1988 U.S. -Japan bottom trawl survey.

107


Fi gure 52. -- Popul ation number estimates by centi neter length interval for flathead sole in the eastern Bering Sea as shown by data from the 1988 U. S. -J apan bottom traw survey.


Figure 53. --Distribution and relative abundance of Alaska plaice in the eastern Bering Sea as shown by the 1988 U.S.-Japan bottom trawl survey.

Table 35. --Abundance estimates and mean size of Alaska plaice by subarea from the 1988 U.S. -Japan bottom trawl surveys in the eastern Bering Sea.

SubareaDepth   interval   (m)		Estimated biomass ( t )	Proportion of estimated biomass	Estimated   d population numbers	Proportion of estimated population	$\begin{gathered} \text { Mean } \\ (\mathrm{kg}) \end{gathered}$	ize Léngth (cm)
Eastern Bering Sea Shelf							
$\begin{array}{rr} 1 & <50 \\ 2 & 50-100 \\ 3 & 50-100 \\ 4 & 50-200 \\ 5 & 100-200 \\ 6 & 100-200 \end{array}$	$\begin{array}{r} 22.28 \\ 17.15 \\ 35.46 \\ 27.36 \\ 0.05 \\ 3.32 \end{array}$	$\begin{array}{r} 173,502 \\ 70,373 \\ 366,305 \\ 295,049 \\ 31,375 \end{array}$	$\begin{array}{r} 0.164 \\ 0.066 \\ 0.345 \\ 0.278 \\ <0.001 \\ 0.030 \end{array}$	$\begin{array}{r} 346,591,257 \\ 155,109,270 \\ 467,47,957 \\ 399,354 ; 847 \\ 18,242,260 \\ 182 \end{array}$	$\begin{array}{r} 0.218 \\ 0.097 \\ 0.293 \\ 0.251 \\ <0.001 \\ 0.011 \end{array}$	$\begin{aligned} & 0.501 \\ & 0.454 \\ & 0.784 \\ & 0.739 \\ & 1.482 \\ & 1.720 \end{aligned}$	$\begin{aligned} & 33.2 \\ & 32.1 \\ & 38.5 \\ & 37.0 \\ & 47.5 \end{aligned}$
Subareas combined North Shelf	20.22	936,783	0.8831	1,386,873,622	0.871	0.675	36.2
$\begin{aligned} & 7 \\ & 8\end{aligned} 50-200$	11.77	85,702 38,158	0.081 0.036	$146,370,573$ $59,580,143$	0.092 0.037	0.586 0.640	31.8 35.3
Subareas combined	8.00	123,861	0.117	205,950,715	0.129	0.601	32.8
Slope							
$\begin{array}{rr}9 & 200-500 \\ 10 & 200-500 \\ 11 & 500-800 \\ 12 & 500-800\end{array}$	$0 \times$ 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	-	-
Subareas combined	0	0	0	0	0	-	-
All subareas combined	16.59	1,060,644	1.0001	1,592,824,337	1.000	0.666	35.7

## ${ }^{\text {a }}$ O indicates fishing but no catch.

bte: Differences in total sand sums of bi onass and population numbers by subarea are due to rounding.


## ALASKA PLAICE



100-200m


Figure 54. --Length composition of Alaska plaice by subarea and depth zone as shown by data from the 1988 U.S.-Japan bottom trawl survey.


Fi gure 55. -- Popul ation number estimates by centimeter length interval for Al aska plaice in the eastern Bering Sea as shown by data fromthe 1988 U. S. -J apan bottom traw survey.


Table 36.--Abundance estimates and mean size of Greenland turbot by subarea from the 1988 U.S.-Japan bottom trawl surveys in the eastern Bering Sea.


## ${ }^{A} \mathrm{O}$ indicates fishing but no catch.

Note: Differences in totals and suns of bi onass and population numbers by subarea are due to rounding.


Figure 57.--Length composition of Greenland turbot by subarea and depth zone as shown by data from the 1988 U,S. -Japan bottom trawl survey.


Fi gure 58. -- Popul ation number esti nates by centimeter length interval for Greenl and turbot in the eastern Bering Sea as shown by data fromthe 1988 U. S. -J apan bottom traw survey.


Table 37.--Abundance estimates and mean size of arrowtooth flounder by subarea from the 1988 U.S.-Japan bottom trawl surveys in the eastern Bering Sea.

Subarea$\left.\begin{array}{c}\text { Depth } \\ \text { interval } \\ (\mathrm{m})\end{array}\right)$	Mean CPUE (kg/ha)	Estimated biomass (t)	Proportion of esstimated biomass	Estimated population numbers	Proportion of estimated population	$\begin{gathered} \text { Mea } \\ \substack{\text { Weight } \\ (\mathrm{kg})} \end{gathered}$	$\begin{aligned} & \text { ize } \\ & \text { Length } \\ & (\mathrm{cm}) \end{aligned}$
Eastern Bering Sea Shelf							
$\begin{array}{rr}1 & <50 \\ 2 & <50 \\ 3 & 50-100\end{array}$	0.13 $7.50^{\text {a }}$	1,018 77	0.003 0 0.230	7,456,772	0.009	0.136	22.4
$\begin{aligned} & 3 \\ & 4\end{aligned} 50-100$	7.51 1.25	77,555	0.230	231,436,632	0.291	0.335	31.4
5 100-200	23.72	91,'999	0.273	231,792,695	0. 299	0.171	23.2
6 100-200	12.93	122,348	0.363	228,'986,714	0.287	0.534	36.0
Subareas combined	6.61	306,361	0.909	778,189,950	0.977	0.394	32.3
North Shelf							
$\begin{array}{ll}7 & \\ 8 & 50-200\end{array}$	0.02	0 132	<0.001	116,468	$<0.001$	1.134	
Subareas combined	0.01	132	$<0.001$	116,468	<0.001	1.134	
Slope							
9 200-500	21.72	16,908	0.050	9,514,617			
10 11	21.54	12,162	0.036	7,876,929	0.010	1.544	51.9
$12500-800$	2.76 0.84	1,210	0.004 0.001	668,059 171,198	0.001 $<0.001$	1.811	54.4
Subareas combined	14.46	30,560	0.091	18,230,804	0.023	1.676	52.7
All subareas combined							
	5.27	337,053	1.000	796,537,221	1.000	0.423	32.8

${ }^{\text {a }} \mathrm{O}$ i ndi cates fishi ng but no catch. - indicates no catch or no sample.

Note: Differences in totals and suns of bi onass and population numbers by subarea are due to roundi ng.



Fi gure 61. -- Popul ation number estimates by centimeter length interval for arrout ooth flounder in the eastern Bering Sea as shown by data from the 1988 U. S.-Japan bottomtraw survey.


Figure 62.--Distribution and relative abundance of Pacific halibut in the eastern Bering Sea as shown by the 1988 U.S.-Japan bottom trawl survey.

Table 38. --Abundance estimates and mean size of Pacific halibut by subarea from the 1988 U.S.-Japan bottom trawl surveys in the eastern Bering Sea.

SubareaDepth   interval   $(\mathrm{m})$	Mean CPUE (kg/ha)	Estimated biomass ( t )	Proportion of estimated biomass	Estimated population numbers	Proportion of estimated population	$\begin{gathered} \text { Mear } \\ \text { Weight } \\ (\mathrm{kg}) \end{gathered}$	ize Length (cm)
Eastern Bering Sea Shelf							
$1<50$	3.98	30,973	0.217	11,768,277	0.305	2.632	50.1
$2<50$	2.66	10,915	0.077	5,844,231	0.152	1.868	49.6
$3 \quad 50-100$	2.40	24,761	0.174	5,608,216	0.146	4.415	63.8
4 5	1.40	15,137	0.106	4, 4225,237	0.125	3.137	53.0 77.6
6 100-200	2.97	28,061	0.197	4,284,503	0.111	6.549	76.6
Subareas combined	2.98	138,153	0.969	36,838,344	0.956	3.750	58.9
North Shelf							
$7 \quad 50<50$	0.37	2,712	0.019	1,400,763	0.036	1.936	52.5
$850-200$	0.04	304	0.002	156,662	0.004	1.939	56.5
Subareas combined	0.19	3,016	0.021	1,557,425	0.040	1.936	52.9
Slope							
$9200-500$	1.18	915	0.006	79,408	0.002	11.529	86.8
$10-200-500$	0.63	357	0.003	41,629	0.001	8.578	82.2
$\begin{array}{ll}11 & 500-800 \\ 12 & 500-800\end{array}$	0.05	48 17	$<0.001$ $<0.001$	4,939 1,305	$<0.001$ $<0.001$	$\underline{9} 3.705$	93.1 102.0
Subareas combined	0.19	1,338	0.009	127,281	0.003	10.512	85.4
All subareas combined	2.23	142,507	1.000	38,523,049	1.000	3.699	58.9

Note: Differences in totals and suns of bi onass and population nunbers by subarea are due to rounding.



200-500m



## PACIFIC HALIBUT


$100-200 \mathrm{~m}$




$<50 \mathrm{~m}$




Figure 63. --Length composition of Pacific halibut by subarea and depth zone as shown by data
from the 1988 U.S. -Japan bottom trawl survey.

123

Fi gure 64. -- Popul ation number estimates by centimeter I ength interval for Pacific hal ibut in the eastern Bering Sea as shown by data fromthe 1988 U. S. -J apan bottom traw survey.


[^7]Table 39. --Abundance estimates and mean size of longhead dab by subarea from the 1988 U.S.-Japan bottom trawl surveys in the eastern Bering Sea.

SubareaDepth   interval   $(\mathrm{m})$		Estimated biomass (t)	Proportion of estimated biomass	Estimated population numbers	Proportion of estimated population	$\begin{gathered} \text { Mean } \\ \text { Weight } \\ (\mathrm{kg}) \end{gathered}$	$\begin{gathered} \frac{\text { ize }}{\text { Length }} \\ \text { (cm) } \end{gathered}$
Eastern Bering Sea Shelf							
$\begin{array}{rr}1 & \ll 50 \\ 2 & <50 \\ 3 & 50-100 \\ 4 & 50-100 \\ 5 & 100-200 \\ 6 & 100-200\end{array}$	$\begin{array}{r} 2.15 \\ 1.23 \\ 0.16 \\ <0.01 \\ 0 \\ 0 \end{array}$	16,762 5,042 1,655 2 0 0	$\begin{array}{r} 0.684 \\ 0.206 \\ 0.068 \\ <0.001 \\ 0 \\ 0 \end{array}$	$151,642,869$ $90,364,694$ $5,423,911$ 36,434 0 0	$\begin{array}{r} 0.566 \\ 0.337 \\ 0.020 \\ <0.001 \\ 0 \\ 0 \end{array}$	$\begin{array}{r}0.111 \\ 0.056 \\ 0.305 \\ 0.045 \\ - \\ \hline\end{array}$	23.6
Subareas combined	0.51	23,460	0.958	247,467,907	0.924	0.095	23.6
North Slope							
$\begin{aligned} & 7 \\ & 8\end{aligned} 50-50$	0.14	1,028	0.042	20,412,411	0.076 0	0.050	16.4
Subareas combined	0.07	1,028	0.042	20,412,411	0.076	0.050	16.4
Slope							
$\begin{array}{rr}9 & 200-500 \\ 10 & 200-500 \\ 11 & 500-800 \\ 12 & 500-800\end{array}$	0 0 0 0	0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	-	-
Subareas combined	0	0	0	0	0	-	-
All subareas combined	0.38	24,489	1.000	267,880,318	1.000	0.091	22.8

## ${ }^{\text {a }}$ O indicates fishing but no catch.

Note: Differences in total $s$ and suns of bi onass and population numbers by subarea are due to rounding.


127


Fi gure 67. -- Popul ation number esti nates by centimeter length interval for I onghead dab in the eastern Bering Sea as shown by data from the 1988 U. S. -J apan bottom traw survey.


Table 40.--Abundance estimates and mean size of starry flounder by subarea from the 1988 U.S.-Japan bottom trawl surveys in the eastern Bering Sea.

SubareaDepth   interval   $(\mathrm{m})$	Mean CPUE (kg/ha)	Estimated biomass ( t )	Proportion of estimated biomass	Estimated population numbers	Proportion of estimated population	$\begin{gathered} \text { Mean } \\ \text { Weight } \\ (\mathrm{kg}) \end{gathered}$	$\frac{\text { ize }}{\substack{\text { Length } \\(\mathrm{cm})}}$
Eastern Bering Sea Shelf							
$\begin{array}{rrr}1 & <50 \\ 2 & <50 \\ 3 & 50-100 \\ 4 & 50 & 100 \\ 5 & 100 & =200 \\ 6 & 100-200\end{array}$	$\begin{aligned} & 0.71 \\ & 0.17 \\ & 0.30 \\ & 0.02 \\ & 0.02 \end{aligned}$	$\begin{array}{r} 5,540 \\ 679 \\ 3,148 \\ 94 \\ 94 \end{array}$	$\begin{gathered} 0.454 \\ 0.056 \\ 0.258 \\ 0.008 \\ 0.0 \end{gathered}$	$\begin{array}{r} 4,399,871 \\ 1,722,433 \\ 0 \\ 59,130 \\ 0 \end{array}$	$\begin{array}{r} 0.444 \\ 0.068 \\ 0.174 \\ 0.006 \\ 0.0 \end{array}$	$\begin{array}{r} 1.259 \\ 1.001 \\ 1.827 \\ 1.588 \end{array}$	-
Subareas combined   North Shelf	North Shelf						-
$\begin{aligned} & 7 \\ & 8\end{aligned} 50-500$	0.38	2,735 0	0.224 0	3,055,710	0.308 0	0.895	38.7
Subareas combined	0.18	2,735	0.224	3,055,710	0.308	0.895	38.7
Slope							
$\begin{array}{rr}9 & 200-500 \\ 10 & 200-500 \\ 11 & 500-800 \\ 12 & 500-800\end{array}$	0 0 0 0	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	0 0 0 0	0 0 0 0	E	$\overline{-}$
Subareas combined	0	0	0	0	0	-	-
All subareas combined	0.19	12,196	1.000	9,915,739	1.000	1.230	38.7

${ }^{\text {a }} \mathrm{O}$ indicates fishing but no catch.
Not e: Differences in totals and suns of bi onass and popul ation numbers by subarea are due to roundi ng





## STARRY FLOUNDER

## 50-100m








Figure 69.--Length composition of starry flounder by subarea and depth zone as shown by data from the 1988 U.S.-Japan bottom trawl survey.


Table 41.--Abundance esti nates and mean size of rex sole by subarea from the 1988 U.S.-Japan bottom trawl surveys in the eastern Bering Sea.

${ }^{\text {a }}$ O indicates fishing but no catch.

- i indi cates no catch or no sample.

Note: Differences in totals and suns of bi onass and population nunbers by subarea are due to rounding.



Fi gure 72.-- Popul ation number estimates by centimeter length interval for rex sole in the eastern Bering Sea as shown by data fromthe 1988 U. S. -J apan bottom traw survey.


Figure 73.--Distribution and relative abundance of Pacific herring in the eastern Bering Sea as shown by the 1988 U.S.-Japan bottom trawl survey.

Table 42. --Abundance estimates and mean size of Pacific herring by subarea from the 1988 U.S.-Japan bottom trawl surveys in the eastern Bering Sea.

SubareaDepth   interval   (m)	Mean CPUE (kg/ha)	Estimated biomass ( t )	Proportion of esstimated biomass	Estimated population numbers	Proportion of estimated population	$\begin{gathered} \text { Mean } \\ \text { Weight } \\ (\mathrm{kg}) \end{gathered}$	ize   Length (cm)
Eastern Bering Sea Shelf							
$1<50$	19.76	153,848	0.933	559,746,529	0.922	0.275	-
$2<50$	0.42	1,721	0.010	7,503, 144	0.012	0.229	-
$3 \quad 50-100$	0.07	- 758	0.005	19,642,339	0.006	0.208	-
4 5	${ }^{0.44}{ }^{\text {a }}$	4,694	0.028	19,090,328	0.031	0.246	-
6 100-200	0.36	3,421	0.021	12,949,172	0.021	0.264	-
Subareas combined	3.55	164,443	0.997	602,931,512	0.993	0.273	-
North Shelf							
< 50	0.01	51	$<0.001$	998,020	0.002	0.051	-
8 50-200	0.06	460	0.003	3,031,610	0.005	0.152	-
Subareas combined	0.03	511	0.003	4,029,630	0.007	0.127	-
Slope							
$9200-500$	$<0.01$	2	<0.001	4,472	$<0.001$	0.454	-
$\begin{array}{ll}10 & 200-500 \\ 11 & 500-800\end{array}$	0	0	0	0	0	-	
$12500-800$	0	0	0		0	-	-
Subareas combined	$<0.01$	2	<0.001	4,472	$<0.001$	0.454	-
All subareas combined	2.58	164,956	1.000	606,965,614	1.000	0.272	-

## ${ }^{\text {a }} \mathrm{O}$ i ndicates fishing but no catch.

Note: Differences in totals and suns of bi onass and population numbers by subarea are due to rounding.


Fi gure 74. -- Distribution and rel ative abundance of grenadi ers in the eastern Bering Sea as shown by the 1988 U. S. -J apan bottomtraw survey.

Table 43. --Abundance estimates and mean size of Coryphaenoides spp. and giant grenadiers by subarea from the 1988 U.S. bottom trawl survey of the Bering Sea slope.

Subarea	$\begin{aligned} & \text { Depth } \\ & \text { interval } \\ & (\mathrm{m}) \end{aligned}$	Mean CPUE (kg/ha)	Estimated biomass (t)	Proportion of estimated biomass	Estimated population numbers	Proportion of estimated population	$\begin{gathered} \text { Mean } \\ \text { Weight } \\ (\mathrm{kg}) \end{gathered}$	$z e$ Length (cm)
Coryphaenoides spp.								
9	200-500	0.02	13	0.001	55,689	0.001	-*	
10	200-500	1.54	872	0.088	7,819,505	0.128	-	
11	500-800	7.42	3,260	0.331	11, 429,295	0.187	-	
	500-800	17.24	5,707	0.579	41,714,945	0.684	-	-
Subareas	combined	4.66	9,852	1.000	61,019,434	1.000	-	-
Giant qrenadier								
	200-500	1.23	795	0.025		0.017	5.365	31.7
10	200-500	13.80	7.790	0.206	1,719,689	0.159	4.530	27.7
11	500-800	14.48	6,359	0.168	2, 2 ,82,368	0.263	2.229	23.3
	500-800	68.50	22,679	0.600	6,078,073	0.562	3.731	27.5
Subareas	combined	17.88	37,787	1.000	10,828,906	1.000	3.489	26.5

- i ndi cates no catch or no sample.

Nbte: Differences in totals and sums of bi onass and poul ation numbers by subarea are due to roundi ng. The sum of the bi onass estimates for Coryphaenoi des spp, and gi ant grenadier in this table, based on U.S. survey vessel data, do not equal the estinate for all grenadiers in Table 8. The estimate in Table 8 incl udes data from the Japanese survey vessel which di d not al ways identify gi ant grenadi ers in their catches.

## CORYPHAENOIDES SPP.



Figure 75.--Population number estimates by centimeter length interval for Coryphaenoides spp. and giant grenadier in the eastern Bering Sea as shown by data from the 1988 U.S.-Japan bottom trawl survey. Length measurements are from the anterior tip of the head to the middle of the anus.


Figure 76.--Distribution and relative abundance of sculpins in the eastern Bering Sea as shown by the 1988 U.S.-Japan bottom trawl survey.

Table 44.--Estimates of biomass (t) and population numbers in millions (below) by depth (m) and subareas for sculpins from the 1988 U.S.-Japan bottom trawl surveys in the Bering Sea.

Species	Eastern Bering Sea Shelf						North Shelf		Slope				All subareas combined	Proportion of total population
	$<50$		50-100		100-200		$<50$	50.200	200-500		500-800			
	1	2	3	4	5	6	7	8	9	10	11	12		
$\begin{aligned} & \text { Gymnocanthus } \\ & \text { SPP. } \end{aligned}$	2,000 55.4	212	452	2,669	0 0.0	0	1.057 31.3	12.1	0 0.0	0.0	0.0	0 0.0	6.913 109.8	0.022
Butterfly sculpin	0 0.0	0 0.0	0 0.0	50.965 183.4	0 0.0	26 0.2	152264	26,680 70.5	0 0.0	0 0.0	0 0.0	- 0	92.935	0.295
$\frac{\mathrm{Mal} \text { acocottus }}{\text { spp. }}$	0 0.0	0 0.0	0 0.0	0 0.0	43 0.3	30 0.2	$\begin{array}{r}0 \\ 0.0\end{array}$	0 0.0	570 3.8	590 4.1	456	0.1	1,700	0.005 0.015
Yellow Irish lords	319 1.1	0 0.0	7,508 11.7	13,374 26.5	667 0.8	2.932	24 0.2	0 0.0	0 0.0	3 $<0.1$	0 0.0	<0.1	24.830	0.079 0.060
Plain sculpin	254932	15,567 21.8	2,547	5,477	0 0.0	63 $\times 0.1$	20 28.0	144 0.2	0 0.0	0 0.0	0 0.0	0.0	69.930	$\begin{aligned} & 0.222 \\ & 0.135 \end{aligned}$
Other Myoxocephalus	17.84, 27	669 1.2	8,359 5.6	44.022	0 0.0	7,165 2.8	8,096	2,383	0 0.0	17 $<0.1$	0.0	0 0.0	88.553	0.281
Spinyhead sculpin	0.0	0 0.0	36 0.2	0.45	225	638 1.6	0 0.0	0 0.0	0.38	10 0.2	0.1	<0.1	996 3.9	0.003 0.005
Bigmouth sculpin	0 0.0	0 0.0	876 0.1	1,587 0.3	7,207 1.5	11,993 4.5	0 0.0	14 0.1		1.414 0.4	109	<0.12	23.776 7.1	0.076 0.009
Other sculpins	204	30 1.5	158	1.617 5.3	220 5.2	26170 60.5	140 4.6	391 8.6	16 0.2	1.3	0.3	37 0.2	5 69.8	$\begin{aligned} & 0.016 \\ & 0.132 \end{aligned}$
Total sculpins	46.3975	16,479 26.9	19.936 22.7	119.765 269.3	8,363 8.9	25,017 75.2	446822 104.1	30 96.6	1.179	2.075 6.0	577 3.2	0.3	314.666 755.3	1.000

Note: Differences in totals and suns are due to rounding.



[^8]

[^9]




Figure 83.--Distribution and relative abundance of bigmouth sculpin in the eastern Bering Sea as shown by the 1988 U.S.-Japan bottom trawl survey.


Figure 84.--Distribution and relative abundance of eelpouts in the eastern Bering Sea as shown by the 1988 U.S.-Japan bottom trawl survey.

Table	Estimates of biomass (in metric tons) and population numbers in millions (below) by depth (m) and subareas for eelpouts from the 1988 U.S.-Japan bottom trawl surveys in the Bering Sea.													
	Eastern Bering Sea Shelf						North Shelf		Slope				$\begin{aligned} & \text { All } \\ & \text { subareas } \\ & \text { combined } \end{aligned}$	Proportion of total population
				50-100		100-200	<50	50-200	200	-500		-800		
Species	1	2	3	4	5	6	7	8	9	10	11	12		
Marbled eelpout	0.0	0.0	0.0	19 21.0	0.0	109	5,480	${ }^{26} 54.3$	0.0	0.0	0.0		51.025	0.535 0.187
Two-line eelpout	0.0	0.0	0.0	0 0.0	0.0	0 0.0	0.0	0.0	353	109	2,323	0.1	2,864	0.030 0.014
Wattled eelpout	0.0	0.1	5214 25.3	53249	560 2.2	13350 75.4	0.0	${ }^{7} 2229$	<0.1	0.1		0.0	318669 192.0	0.332
Ebony eelpout	0.0	0.0	0 0.0	0.0	0.0	0.0	0.0	0.0	218 0.3	0.1	271	0.1	606	0.006
Shortfin eelpout	0.0	0.0	200	364	376	6.212 .1	0.0	473 8.7	<0. 2	<0.1	0.0	0.0	75529	0.079
Black eelpout	0.0	0.0	0	0	0.0	0.0	0	0.0	1.2	0.3	183	79 0.2	388 3.3	0.004 0.008
Other eelpouts	313 0.1	0.0	0.0 0.0	500 0.7	0.0	0 0.0	0.0	348 1.7	0.0	0.0		<0. 2	1,250	0.013 0.006
Total eelpouts	$\begin{aligned} & 313 \\ & 0.1 \end{aligned}$	0.1	5414 26.8	${ }^{25} 59.4$	937	${ }_{19}^{197.6}$	5,480 5.0	34 14.3	687 2.3	217 0.5	2,864	225	951331 414.8	1.000 1.000



[^10]

Figure 86.--Distribution and relative abundance of wattled eelpout in the eastern Bering Sea as shown by the 1988 U.S.-Japan bottom trawl survey.


[^11]

Figure 88.--Distribution and relative abundance of skates in the eastern Bering Sea as shown by the 1988 U.S.-Japan bottom trawl survey.

```
Table 46. --Abundance estimates and mean size of skates by subarea from the 1988
 U.S.-Japan bottom trawl surveys in the eastern Bering Sea.
```


i ndi cates no catch or no sample.
Note: Differences in totals and suns of bi onass and population nunbers by subarea are due to rounding.


Table 47 .--Abundance estimates and mean size of poachers by subarea Erom the 1988 U.S.-Japan bottom trawl surveys in the eastern Bering Sea.

$\text { Subarea } \begin{gathered} \text { Depth } \\ \text { interval } \\ \text { (m) } \end{gathered}$	Mean CPUE (kg/ha)	Estimated biomass (t)	Proportion of estimated biomass	Estimated population numbers	Proportion of estimated population	$\begin{gathered} \text { Mea } \\ \text { Weighit } \\ (\mathrm{kg}) \end{gathered}$	ze Length (cm)
Eastern Bering Sea Shelf							
$1<50$	0.87	6,795	0.256	127,404,018	0.248	0.053	-*
$2<50<50$	0.95	3,902	0.147	82, 668,631	0.161	0.047	
$350-100$	0.75	7,778	0.293	143,731,056	0.280	0.054	
$5 \quad 100-200$	0.05	$\begin{array}{r}\text { 6,963 } \\ \hline 191\end{array}$	0.007	134,761,518	0.261	0.052	
6 100-200	0.02	157	0.006	3,225,019	0.006	0.049	-
Subareas combined	0.56	25,787	0.970	493,709,391	0.962	0.052	-
North Shelf							
$\begin{aligned} & 7 \\ & 8\end{aligned} 50-50$	0.09 $<0.01$	650 37	0.024 0.001	16,348,957	0.032 0.002	0.040 0.038	
Subareas combined	0.04	687	0.026	17,315,723	0.034	0.040	-
Slope							
9 200-500	0.09	68	0.003	1,269,578	0.002	0.054	
10 200-500	0.05	26	0.001	457,815	0.001	0.056	
11 500-800	0.02	9	$<0.001$	330,595	0.001	0.028	-
$12500-800$	$<0.01$	2	<0.001	65,559	$<0.001$	0.025	-
Subareas combined	0.05	105	0.004	2,123,546	0.004	0.049	-
All subareas combined	0.42	26,579	1.000	513,148,660	1.000	0.052	-

Note: Differences in totals and suns of bi onass and popul ation numbers by subarea are due to rounding.


[^12]```
Table 48. --Abundance estimates and mean size of snailfish by subarea from
the 1988 U.S. -Japan bottom trawl surveys in the eastern Bering Sea.
```

| Subarea $\left.\begin{array}{c}\text { Depth } \\ \text { interval } \\ \text { (m) }\end{array}\right)$ | Mean CPUE (kg/ha) | Estimated biomass (t) | Proportion of estimated biomass | Estimated population numbers | Proportion of estimated population | $\underset{(\mathrm{kg})}{\substack{\text { Mean } \\ \text { Weight }}}$ | $\begin{aligned} & \text { ize } \\ & \text { Length } \\ & \text { (cm) } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Eastern Bering Sea Shelf | | | | | | | |
| $1<50$ | 0.03 | 240 | 0.018 | 1,586,145 | 0.018 | 0.151 | -* |
| $2<50$ | 0.02 | 62 | 0.005 | 521,541 | 0.006 | 0.120 | |
| $3 \quad 50-100$ | 0.04 | 3395 | 0.030 | 498,514 | 0.006 | 0.793 | |
| 4 5 | 0.31 | 3,387 | 0. 0.02 | 5,6218,260 | 0.001 | 0.627 | - |
| 6 100-200 | 0.33 | 3,164 | 0.237 | 10,532,413 | 0.117 | 0.300 | |
| Subareas combined | 0.16 | 7,276 | 0.545 | 18,877,753 | 0.210 | 0.385 | - |
| North Shelf | | | | | | | |
| 7. $50<50$ | 0.03 | 5 251 | 0.019 | 3,300,185 | 0.037 | 0.076 | - |
| 8 50-200 | 0.64 | 5,271 | 0.395 | 66,851,502 | 0.743 | 0.079 | |
| Subareas combined | 0.36 | 5,522 | 0.413 | 70,151,687 | 0.779 | 0.079 | - |
| Slope | | | | | | | |
| $9200-500$ | 0.28 | 220 | 0.016 | 210,408 | 0.002 | 1.043 | - |
| 10 200-500 | 0.35 | 200 | 0.015 | 393,443 | 0.004 | 0.508 | - |
| 11 500-800 | 0.12 | 54 | 0.004 | 150,823 | 0.002 | 0.356 | |
| 12 500-800 | 0.26 | 87 | 0.007 | 247,316 | 0.003 | 0.354 | - |
| Subareas combined | 0.27 | 560 | 0.042 | 1,001,991 | 0.011 | 0.559 | - |
| All subareas combined | 0.21 | 13,358 | 1.000 | 90,031,431 | 1.000 | 0.148 | - |

* - indi cates no catch or no sample.

Note: Differences in totals and suns of bi onass and popul ation numbers by subarea are due to roundi ng.

${ }^{2} \mathrm{O}$ indicates fishing but no catch.

- indicates no catch or no sample.

Note: Differences in totals and suns of bionass and popul ation numbers by subarea are due to rounding.

Table 50. --Abundance estimates and mean size of squids by subarea from
the 1988 U.S.-Japan bottom trawl surveys in the eastern Bering Sea.

| SubareaDepth
 interval
 (m) | Mean CPUE (kg/ha) | Estimated biomass (t) | Proportion of estimated biomass | Estimated population numbers | Proportion of estimated population | $\begin{gathered} \text { Mean } \\ (\mathrm{kg}) \end{gathered}$ | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Eastern Bering Sea Shelf | | | | | | | |
| $\begin{array}{rr}1 & <50 \\ 2 & <50 \\ 3 & 50-100 \\ 4 & 50-100 \\ 5 & 100-200 \\ 6 & 100-200\end{array}$ | $\begin{array}{r} 0^{a} \\ <0.01 \\ <0.00 \\ 0.01 \end{array}$ | 0 0 4 0 2 98 | 0 0 0.002 0 0.001 0.043 | $\begin{array}{r} 0 \\ 0 \\ 45,695 \\ 54,479 \\ 1,101,485 \end{array}$ | $\begin{array}{r} 0 \\ 0 \\ 0.007 \\ 0.008 \\ 0.158 \end{array}$ | $\begin{array}{r} -b \\ 0.091 \\ 0.0 \overline{4} \\ 0.089 \end{array}$ | -
 |
| Subareas combined North Shelf | <0.01 | 104 | 0.046 | 1,201,659 | 0.173 | 0.087 | - |
| $\begin{aligned} & 7 \\ & 8\end{aligned} 50-50$ | 0 | 0 | 0 | 0 | 0 | - | - |
| Subareas combined | 0 | 0 | 0 | 0 | 0 | - | - |
| Slope | | | | | | | |
| $\begin{array}{rr}9 & 200-500 \\ 10 & 200-500 \\ 11 & 500-800 \\ 12 & 500-800\end{array}$ | 1.49 1.03 0.89 0.13 | 1,157 579 391 42 | 0.509 0.255 0.172 0.018 | $3,105,623$ $1,547,535$ 984,125 123,639 | 0.446 0.222 0.141 0.018 | $\begin{aligned} & 0.373 \\ & 0.374 \\ & 0.398 \\ & 0.336 \end{aligned}$ | - |
| Subareas combined | 1.03 | 2,169 | 0.954 | 5,760,923 | 0.827 | 0.377 | - |
| All subareas combined | 0.04 | 2,274 | 1.000 | 6,962,582 | 1.000 | 0.327 | - |

${ }^{\text {a }}$ O indicates fishing but no catch;
b- indi cates no catch or no sample.
Nbte: Differences in total s and suns of bi onass and population numbers by subarea are due to rounding.

[^13]| SubareaDepth
 interval
 (m) | Mean CPUE (kg/ha) | Estimated biomass (t) | Proportion of estimated biomass | Estimated population numbers | Proportion of estimated population | $\begin{gathered} \text { Mear } \\ \text { Weight } \\ (\mathrm{kg}) \end{gathered}$ | ize Length (cm) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Eastern Bering Sea Shelf | | | | | | | |
| | 0.05 | 376 | 0.040 | 53,333,007 | 0.086 | 0.007 | -* |
| $2<50$ | 0.07 | 299 | 0.032 | 79,664, 962 | 0.128 | 0.004 | |
| 50-100 | 0.05 | 502 | 0.054 | 10,992,095 | 0.018 | 0.046 | |
| 50-100 | 0.02 | 191 | 0.020 | 16,458,805 | 0.027 | 0.012 | |
| 5 - $100-200$ | 0.04 | 145 | 0.016 | 15,789,367 | 0.025 | 0.009 | |
| 6 100-200 | 0.30 | 2,859 | 0.307 | 168,824,755 | 0.272 | 0.017 | - |
| Subareas combined | 0.09 | 4,372 | 0.469 | 345,062,991 | 0.556 | 0.013 | - |
| North Shelf | | | | | | | |
| $750 \leq 50$ | 0.29 | 2,099 | 0.225 | 109, 888, 126 | 0.177 | 0.019 | |
| Subareas combined | 0.28 | 4,348 | 0.467 | 240,831,461 | 0.388 | 0.018 | - |
| Slope | | | | | | | |
| 9 . $200-500$ | 0.45 | 347 | 0.037 | 22,314,143 | 0.036 | 0.016 | - |
| $10-200-500$ | 0.37 | 209 | 0.022 | 10,342,601 | 0.017 | 0.020 | - |
| $115500-800$ | 0.07 | 29 | 0.003 | 1,353,315 | 0.002 | 0.022 | |
| 12 500-800 | 0.07 | 22 | 0.002 | 920,073 | 0.001 | 0.024 | - |
| Subareas combined | 0.29 | 608 | 0.065 | 34,930,132 | 0.056 | 0.017 | - |
| All subareas combined | 0.15 | 9,328 | 1.000 | 620,824,583 | 1.000 | 0.015 | - |

*i ndi cates no catch or no sample.
Note: Differences in totals and sums of bi onass and population numbers by subarea are due to roundi ng.

[^14]Table 52.--Abundance estimates and mean size of octopuses by subarea from the 1988 U.s.-Japan bottom trawl surveys in the eastern Bering Sea.

${ }^{\circ} 0$ indicates fishing but no catch; b- indicates no fishing or no sample.
Note: Differences in totals and sums of biomass and population numbers by subarea are due to rounding.

CITATIONS

Alverson, D. L., and W. T. Pereyra. 1969. Demersal fish explorations in the northeast Pacific Ocean--an evaluation of exploratory fishing methods and analytical approaches to stock size and yield forecasts. J. Fish. Res. Board Can. 26:1985-2001.

Bakkala, R. 1989. Variability in the size and age composition of eastern Bering Sea walleye pollock. In proceedings of the international symposium on the biology and management of walleye pollock. Alaska Sea Grant Rep. No. 89-1, p.307-322.

Bakkala, R. G., J. J. Traynor, K. Teshima, A. M. Shimada, and H. Yamaguchi. 1985. Results of cooperative U.S.-Japan groundfish investigations in the eastern Bering Sea during June-November 1982. U.S. Dep. Commer., NOAA Tech. Memo. NMFS F/NWC-117, 448 p.

Bakkala, R. G., and K. Wakabayashi (editors). 1985. Results of cooperative U.S. -Japan groundfish investigations in the Bering Sea during May-August 1979. Int. North Pac. Fish. comm., Bull. 44, 252 p.

Bakkala, R. G., and T. K. Wilderbuer. 1988. Greenland turbot. In L-L. Low and R. E. Narita (editors), Condition of groundfish resources in the Bering Sea - Aleutian Islands region as assessed in 1988, p. 86-101. U.S. Dep. Commer., NOAA Tech. Memo. NMFS F/NWC: 178.

Ehrenberg, J. E. 1983. A review of in situ target strength estimation techniques. FAO Fish. Rep. 300:85-90.

Foote, K. G., and J. J. Traynor. 1988. Comparison of walleye pollock target strength estimates determined from in situ measurements and calculations based on swim bladder form. J. Acoust. Soc. Am. 88(1):9-17.

Geisser, S., and W. F. Eddy. 1979. A predictive approach to model selection. J. Am. Stat. Assoc. 74(365):153-160.

Stevens, B. G., R. A. Macintosh, and K. L. Stahl-Johnson. 1988. Report to industry on the 1988 eastern Bering Sea crab survey. NWAFC Processed Rep. 88-23, 41 p. Kodiak Facility, Northwest and Alaska Fish. Cent., Natl. Mar. Fish. Serv., P.O. Box 1638, Kodiak, AK 99615.

Traynor, J. J., and M. O. Nelson. 1985. Methods of the U.S. hydroacoustic (echo integrator-midwater trawl) survey. In R.G. Bakkala and K. Wakabayashi (editors), Results of cooperative U.S. -Japan groundfish investigations in the Bering Sea during May-August 1979, p. 30-34. Int. North Pac. Fish. Comm., Bull. 44.

Wakabayashi, K., R. G. Bakkala, and M. S. Alton. 1985. Methods of the U.S.-Japan demersal trawl surveys. In R.G. Bakkala and K. Wakabayashi (editors), Results of cooperative U.S.Japan groundfish investigations in the Bering Sea during MayAugust 1979, p. 7-26. Int. North. Pac. Fish. Comm., Bull. 44.

Walters, G. E., K. Teshima, J. J. Traynor, R. G. Bakkala,
J. A. Sassano, K. L. Halliday, W. A. Karp, K. Mito, N. J. Williamson, and D. M. Smith. 1988. Distribution, abundance, and biological characteristics of groundfish in the eastern Bering Sea based on results of the U.S.-Japan triennial bottom trawl and hydroacoustic survey, during May-September, 1985. U.S. Dep. Commer., NOAA Tech Memo. NMFS F/NWC-154, 400 p.

APPENDIX A
Schematic Diagrams of Trawls Used During the 1988 U.S.-Japan Eastern Bering Sea Surveys

List of Figures

Figure

Page

Figure A-2a. --Schematic diagram of the bottom trawl used on the Japanese vessel Tomi Maru No. 51 during the 1988 survey173

Figure A-2b. --Schematic diagram of the lower and upper
ground-rope used on the bottom trawl of the
Japanese vessel omi Maru No. 51 174

Figure A-3. --Schematic diagram of the Nor'eastern trawl used by the NOAA vessel Miller Freeman on the continental slope during the 1988 survey......175

Figure A-4a. --Schematic diagram of the Northern Gold trawl used to sample age-l and older walleye pollock during the 1988 midwater survey aboard the Pelagos176

Figure A-4b. --Schematic diagram of the rigging for the headrope, footrope, and breastlines (above) and the bridles (below), for the Northern Gold trawl used during the midwater survey on the Pelagos177

83-112 EASTERN BOTTOM TRAWL

Figure A-1. --Schematic diagram of the 83-112 Eastern bottom trawl used by U.S. vessels on the continental shelf during the 1988 survey.

Figure A-2a.--Schematic diagram of the bottom trawl used on the Japanese vessel Tomi Maru No. 51 during the 1988 survey.

A
A: Front wing

B: Central wing

D: Belly

Figure $A-2 b .--S c h e m a t i c$ diagram of the lower and upper ground-rope used on the bottom trawl of the Japanese vessel Tomi Maru No. 51.

POLY-NOREASTERN

Figure A-3. --Schematic diagram of the Nor'eastern trawl used by the NOAA vessel Miller Freeman on the continental slope during the 1988 survey.

Figure A4a.- Schematic diagram of the Northern Gold trawl used to sample age-l and older walleye pollock during the 1988 midwater survey aboard the Pelagos.

[^15]
MARINOVICH MIDWATER TRAWL-2

(Four Identical Panels)

Figure A-5.--Schematic diagram of the Marinovich midwater trawl used during the 1988 midwater survey to sample age-0 walleye pollock aboard the Pelagos.
APPENDIX B
Station Data from the 1988 U.S.-Japan Eastern Bering Sea Surveys
Appendix B contains listings of station data for all trawl stations completed during the 1988 surveys.
In using the tables the following should be noted:
Time represents the nearest hour at the start of the tow.
List of Tables
Table Page
B-l Station data for the chartered vessel Alaska during the 1988 bottom trawl survey. 180
B-2 Station data for the chartered vessel Ocean Hope 3 during the 1988 bottom trawl survey. 185
B-3 Station data for the NOAA vessel Miller Freeman during the 1988 bottom trawl survey 190
B-4 Station data for the chartered vessel Tomi Maru No. 51 during the 1988 bottom trawl survey 194
B-5 Station data for the chartered vessel Pelagos during the 1988 midwater survey while fishing the Northern Gold 1200 rope trawl 195
B-6 Station data for the chartered vessel Pelagos during the 1988 midwater survey while fishing the Marinovich trawl 196

Table B-I.--Station data for the chartered vessel Alaska during the 1988 bottom traw survey.

| Haul | Date | Latitude
 Deg Min | Longitude Deg Min | Depth
 (M) | Time | $\begin{gathered} \text { Duration } \\ (\mathrm{Hr}) \end{gathered}$ | $\begin{gathered} \text { Distance } \\ (n m i) \end{gathered}$ | Strata ${ }^{\circ}$ | surt. Temp. ($\left.{ }^{\circ} \mathrm{C}\right)$ | Gear Temp. $\left({ }^{\circ} \mathrm{C}\right)^{b}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | $614 / 88$ | 5720 | 15826 | 17 | 7 | 0.50 | 1.36 | 10 | 4.6 | 4.6 |
| 2 | 6/ 4/88 | 5740 | 15823 | 19 | 10 | 0.50 | 1.34 | 10 | 4.6 | 3.6 |
| 3 | 6/ 4/88 | 581 | 15820 | 17 | 13 | 0.50 | 1.48 | 10 | 5.7 | 4.5 |
| 4 | 6/ 4/88 | 581 | 15857 | 21 | 16 | 0.50 | 1.44 | 10 | 7.2 | 3.2 |
| 5 | 6/ $5 / 88$ | 5841 | 15952 | 11 | 16 | 0.33 | 0.95 | -9 | 8.2 | -9.0 |
| 6 | 6/5/88 | 5840 | 15933 | 7 | 18 | 0.33 | 1.09 | -9 | 8.7 | 8.4 |
| 7 | 6/ 6/88 | 5831 | 15953 | 13 | 6 | 0.33 | 0.88 | -9 | 5.1 | 4.4 |
| 8 | 6/ 6/88 | 5831 | 15935 | 11 | 8 | 0.33 | 1.02 | -9 | 5.6 | 4.9 |
| 9 | 6/6/88 | 5821 | 15934 | 12 | 10 | 0.50 | 1.49 | 10 | 6.2 | 5.7 |
| 10 | 6/ 6/88 | 581 | 15937 | 22 | 12 | 0.50 | 1.43 | 10 | 6.8 | 3.3 |
| 11 | 6/ 6/88 | 5741 | 15938 | 26 | 15 | 0.50 | 1.49 | 10 | 5.2 | 4.0 |
| 12 | 6/6/88 | 5721 | 15939 | 30 | 18 | 0.50 | 1.52 | 10 | 5.6 | 3.6 |
| 13 | 6/ 7/88 | 571 | 15942 | 30 | 7 | 0.50 | 1.53 | 10 | 4.4 | 3.5 |
| 14 | 6/ 7/88 | 5641 | 16058 | 37. | 12 | 0.50 | 1.45 | 30 | 6.9 | 2.2 |
| 15 | 6/7/88 | 5621 | 16059 | 28 | 16 | 0.50 | 1.41 | 10 | 6.6 | 3.5 |
| 16 | 6/ 8/88 | 5660 | 16058 | 33 | 15 | 0.50 | 1.45 | 30 | 5.4 | 2.5 |
| 17 | 6/ 8/88 | 5721 | 16056 | 33 | 18 | 0.50 | 1.50 | 30 | 6.0 | 2.7 |
| 18 | 6/ 9/88 | 5742 | 16055 | 30 | 6 | 0.50 | 1.52 | 30 | 5.0 | 2.2 |
| 19 | 6/ 9/88 | 5760 | 16052 | 23 | 9 | 0.50 | 1.54 | 10 | 4.3 | 3.4 |
| 20 | 6/ 9/88 | 5820 | 16046 | 10 | 11 | 0.50 | 1.61 | 10 | 7.7 | 7.1 |
| 21 | 6/9/88 | 5821 | 1623 | 25 | 16 | 0.50 | 1.44 | 10 | 4.9 | 3.8 |
| 22 | 6/10/88 | 5760 | 1628 | 20 | 6 | 0.50 | 1.43 | 10 | 3.9 | 3.1 |
| 23 | 6/10/88 | 5741 | 1628 | 25 | 9 | 0.50 | 1.48 | 10 | 4.2 | 3.3 |
| 24 | 6/10/88 | 5721 | 16210 | 27 | 12 | 0.50 | 1.51 | 10 | 5.2 | 2.4 |
| 25 | 6/10/88 | 571 | 16210 | 33 | 15 | 0.50 | 1.48 | 30 | 6.3 | 2.1 |
| 26 | 6/10/88 | 5641 | 16211 | 40 | 18 | 0.50 | 1.42 | 30 | 7.4 | 1.2 |
| 27 | 6/11/88 | 5620 | 16212 | 41 | 6 | 0.50 | 1.54 | 30 | 7.0 | 2.2 |
| 28 | 6/11/88 | 561 | 16214 | 34 | 9 | 0.50 | 1.50 | 30 | 7.8 | 3.4 |
| 29 | 6/11/88 | 5541 | 16324 | 43 | 14 | 0.50 | 1.54 | 30 | -9.0 | 2.8 |
| 30 | 6/11/88 | 561 | 16324 | 48 | 17 | 0.50 | 1.53 | 30 | 9.2 | 2.4 |
| 31 | 6/12/88 | 5622 | 16324 | 46 | 6 | 0.50 | 1.45 | 30 | 7.3 | 1.8 |
| 32 | 6/12/88 | 5641 | 16323 | 40 | 9 | 0.50 | 1.48 | 30 | 7.2 | 1.4 |
| 33 | 6/12/88 | 571 | 16324 | 35 | 12 | 0.50 | 1.52 | 30 | 7.1 | 0.5 |
| 34 | 6/12/88 | 5721 | 16324 | 27 | 14 | 0.50 | 1.55 | 10 | 6.4 | 1.8 |
| 35 | 6/12/88 | 5740 | 16322 | 24 | 17 | 0.50 | 1.61 | 10 | 5.8 | 2.4 |
| 36 | 6/13/88 | 581 | 16323 | 23 | 6 | 0.50 | 1.60 | 10 | 3.8 | 3.0 |
| 37 | 6/13/88 | 5820 | 16322 | 19 | 9 | 0.50 | 1.56 | 10 | 4.3 | 3.5 |
| 38 | 6/13/88 | 5840 | 16321 | 16 | 11 | 0.50 | 1.45 | 10 | 4.9 | 3.7 |
| 39 | 6/13/88 | 5859 | 16322 | 11 | 14 | 0.50 | 1.49 | 10 | 5.9 | 4.4 |
| 40 | 6/15/88 | 5911 | 16322 | 8 | 11 | 0.50 | 1.60 | -9 | 7.6 | -9.0 |
| 41 | 6/15/88 | 5920 | 16340 | 7 | 12 | 0.50 | 1.53 | -9 | 8.1 | 7.1 |
| 42 | 6/15/88 | 5930 | 1641 | 8 | 14 | 0.50 | 1.57 | -9 | 8.1 | 8.1 |
| 43 | 6/15/88 | 5921 | 16439 | 11 | 17 | 0.50 | 1.58 | 10 | 7.1 | 6.1 |
| 44 | 6/16/88 | 5860 | 16439 | 14 | 6 | 0.50 | 1.45 | 10 | 4.8 | 4.0 |
| 45 | 6/16/88 | 5841 | 16439 | 19 | 9 | 0.50 | 1.49 | 10 | 4.3 | 3.2 |

Table B-I.--Station data Al aska Conti nued.

| Haul | Date | Latitude Deg Min | Longitude Deg Min | Depth
 (M) | Time | Duration (Hr) | $\begin{gathered} \text { Distance } \\ (\mathrm{nmi}) \end{gathered}$ | Strata ${ }^{\circ}$ | Surf. Temp. ($\left.{ }^{\circ} \mathrm{C}\right)$ | Gear
 Temp. $\left({ }^{\circ} \mathrm{C}\right)^{\mathrm{b}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 46 | 6/16/88 | 5821 | 16438 | 23 | 12 | 0.50 | 1.47 | 10 | 4.3 | 2.7 |
| 47 | 6/16/88 | 581 | 16437 | 24 | 15 | 0.50 | 1.63 | 10 | 4.5 | 2.8 |
| 48 | 6/16/88 | 5741 | 16437 | 28 | 17 | 0.50 | 1.53 | 10 | 6.1 | 1.7 |
| 49 | 6/17/88 | 5721 | 16436 | 35 | 6 | 0.50 | 1.44 | 30 | 6.1 | 0.5 |
| 50 | 6/17/88 | 5660 | 16436 | 38 | 10 | 0.50 | 1.45 | 30 | 6.5 | 0.5 |
| 51 | 6/17/88 | 5641 | 16436 | 40 | 13 | 0.50 | 1.58 | 30 | 7.5 | 1.5 |
| 52 | 6/17/88 | 5621 | 16434 | 47 | 15 | 0.50 | 1.57 | 30 | 8.7 | 1.3 |
| 53 | 6/17/88 | 5560 | 16433 | 50 | 18 | 0.50 | 1.48 | 30 | 8.7 | 2.6 |
| 54 | 6/18/88 | 5540 | 16435 | 52 | 6 | 0.50 | 1.50 | 30 | 7.0 | 2.9 |
| 55 | 6/18/88 | 5521 | 16436 | 56 | 9 | 0.50 | 1.56 | 30 | 6.9 | 4.2 |
| 56 | 6/18/88 | 5451 | 16543 | 84 | 16 | 0.50 | 1.55 | 50 | 7.0 | 3.8 |
| 57 | 6/18/88 | 551 | 16545 | 70 | 19 | 0.50 | 1.65 | 50 | 7.1 | 3.9 |
| 58 | 6/19/88 | 5521 | 16547 | 65 | 8 | 0.50 | 1.50 | 50 | 6.6 | 3.7 |
| 59 | 6/19/88 | 5541 | 16549 | 64 | 10 | 0.50 | 1.56 | 50 | 7.1 | 4.0 |
| 60 | 6/19/88 | 5560 | 16547 | 57 | 13 | 0.50 | 1.48 | 30 | 7.1 | 4.0 |
| 61 | 6/19/88 | 5620 | 16549 | 50 | 16 | 0.50 | 1.53 | 30 | 7.2 | 2.1 |
| 62 | 6/19/88 | 5640 | 16551 | 42 | 18 | 0.50 | 1.47 | 30 | 7.2 | 1.8 |
| 63 | 6/20/88 | 5660 | 16552 | 38 | 6 | 0.50 | 1.43 | 30 | 6.1 | 0.6 |
| 64 | 6/20/88 | 5720 | 16553 | 36 | 9 | 0.50 | 1.54 | 30 | 6.1 | 0.9 |
| 65 | 6/20/88 | 5740 | 16554 | 34 | 12 | 0.50 | 1.58 | 30 | 5.9 | 1.6 |
| 66 | 6/20/88 | 5760 | 16554 | 30 | 16 | 0.50 | 1.46 | 10 | 6.3 | 2.2 |
| 67 | 6/20/88 | 5820 | 16557 | 23 | 18 | 0.57 | 1.66 | 10 | 6.2 | 2.4 |
| 68 | 6/21/88 | 5840 | 16556 | 19 | 6 | 0.52 | 1.44 | 10 | 4.0 | 2.9 |
| 69 | 6/21/88 | 5860 | 16556 | 15 | 9 | 0.50 | 1.46 | 20 | 4.2 | 3.7 |
| 70 | 6/21/88 | 5920 | 16558 | 12 | 12 | 0.50 | 1.63 | 20 | 5.6 | 4.8 |
| 71 | 6/21/88 | 5933 | 16558 | 12 | 14 | 0.50 | 1.65 | 20 | 6.9 | 5.6 |
| 72 | 6/21/88 | 5941 | 16640 | 14 | 17 | 0.50 | 1.52 | 20 | 7.1 | 5.7 |
| 73 | 6/22/88 | 5920 | 16634 | 14 | 7 | 0.50 | 1.45 | 20 | 4.6 | 4.5 |
| 74 | 6/22/88 | 591 | 16635 | 17 | 9 | 0.50 | 1.49 | 20 | 4.0 | 3.5 |
| 75 | 6/25/88 | 551 | 16656 | 85 | 14 | 0.50 | 1.45 | 50 | 6.6 | 3.7 |
| 76 | 6/25/88 | 5521 | 16659 | 76 | 18 | 0.50 | 1.46 | 50 | 7.6 | 3.5 |
| 77 | 6/26/88 | 5540 | 16659 | 74 | 6 | 0.50 | 1.39 | 50 | 7.1 | 3.4 |
| 78 | 6/26/88 | 5560 | 1671 | 73 | 9 | 0.50 | 1.52 | 50 | 7.0 | 3.4 |
| 79 | 6/26/88 | 5620 | 1673 | 61 | 12 | 0.50 | 1.56 | 50 | 6.9 | 3.3 |
| 80 | 6/26/88 | 5640 | 1675 | 51 | 15 | 0.50 | 1.60 | 30 | 8.0 | 2.9 |
| 81 | 6/26/88 | 5660 | 1675 | 40 | 17 | 0.50 | 1.53 | 30 | 7.7 | 1.6 |
| 82 | 6/27/88 | 5720 | 1677 | 38 | 6 | 0.50 | 1.49 | 30 | 7.1 | 0.4 |
| 83 | 6/27/88 | 5740 | 1678 | 36 | 9 | 0.50 | 1.56 | 30 | 5.8 | 0.4 |
| 84 | 6/27/88 | 5760 | 16711 | 34 | 12 | 0.50 | 1.49 | 30 | 5.2 | 0.9 |
| 85 | 6/27/88 | 5820 | 16712 | 27 | 15 | 0.50 | 1.58 | 20 | 5.8 | 2.0 |
| 86 | 6/27/88 | 5840 | 16713 | 23 | 17 | 0.50 | 1.62 | 20 | 5.7 | 2.6 |
| 87 | 6/28/88 | 5860 | 16715 | 20 | 6 | 0.50 | 1.56 | 20 | 5.2 | 3.2 |
| 88 | 6/28/88 | 5920 | 16716 | 16 | 9 | 0.50 | 1.53 | 20 | 5.5 | 4.9 |
| 89 | 6/28/88 | 5937 | 16717 | 15 | 11 | 0.50 | 1.50 | 20 | 6.0 | 4.5 |
| 90 | 6/28/88 | 6020 | 16722 | 16 | 16 | 0.50 | 1.46 | 20 | 7.5 | 5.7 |
| 91 | 6/29/88 | 6020 | 16841 | 18 | 6 | 0.50 | 1.56 | 20 | 5.2 | 3.6 |

Table B-l.--Station data Alaska Continued.

| Haul | Date | Latitude
 Deg Min | Longitude Deg Min | Depth
 (M) | Time | $\begin{aligned} & \text { Duration } \\ & (\mathrm{Hr}) \end{aligned}$ | $\begin{gathered} \text { Distance } \\ (n \mathrm{mi}) \end{gathered}$ | Strata ${ }^{\text {a }}$ | Surf. Temp. (${ }^{\circ} \mathrm{C}$) | Gear Temp. ($\left.{ }^{\circ} \mathrm{C}\right)^{\mathrm{b}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 92 | 6/29/88 | 601 | 16841 | 20 | 9 | 0.50 | 1.55 | 20 | 5.9 | 3.2 |
| 93 | 6/29/88 | 5941 | 16838 | 20 | 11 | 0.50 | 1.56 | 20 | 5.1 | 3.2 |
| 94 | 6/29/88 | 5921 | 16835 | 21 | 14 | 0.50 | 1.50 | 20 | 5.4 | 3.3 |
| 95 | 6/29/88 | 591 | 16833 | 24 | 17 | 0.50 | 1.47 | 20 | 5.6 | 2.3 |
| 96 | 6/30/88 | 5840 | 16831 | 29 | 6 | 0.50 | 1.48 | 20 | 5.0 | 2.4 |
| 97 | 6/30/88 | 5821 | 16829 | 35 | 9 | 0.50 | 1.52 | 40 | 5.7 | 1.1 |
| 98 | 6/30/88 | 581 | 16827 | 37 | 12 | 0.50 | 1.53 | 41 | 5.7 | 0.6 |
| 99 | 6/30/88 | 5751 | 16845 | 38 | 15 | 0.50 | 1.43 | 41 | 6.7 | 0.7 |
| 100 | 6/30/88 | 5741 | 16825 | 38 | 18 | 0.50 | 1.49 | 41 | 7.0 | 1.8 |
| 101 | 7/1/88 | 5731 | 16845 | 38 | 6 | 0.50 | 1.43 | 41 | 6.9 | 2.2 |
| 102 | 7/1/88 | 5721 | 16824 | 40 | 9 | 0.50 | 1.46 | 31 | 6.9 | 2.4 |
| 103 | 7/ 1/88 | 5711 | 16837 | 41 | 11 | 0.50 | 1.53 | 31 | 7.4 | 2.2 |
| 104 | 7/ 1/88 | 571 | 16821 | 43 | 13 | 0.50 | 1.50 | 31 | 7.8 | 1.6 |
| 105 | 7/1/88 | 5651 | 16838 | 52 | 15 | 0.50 | 1.47 | 31 | 8.0 | 1.9 |
| 106 | 7/1/88 | 5641 | 16818 | 58 | 18 | 0.50 | 1.43 | 50 | 8.0 | 2.6 |
| 107 | 7/ 2/88 | 5620 | 16812 | 82 | 11 | 0.50 | 1.53 | 50 | 7.8 | 3.7 |
| 108 | 7/ 2/88 | 561 | 16812 | 80 | 14 | 0.50 | 1.43 | 50 | 8.0 | 3.9 |
| 109 | 7/ 2/88 | 5545 | 16812 | 73 | 17 | 0.50 | 1.42 | 50 | 8.0 | 3.9 |
| 110 | 7/ 3/88 | 5624 | 16928 | 69 | 7 | 0.33 | 0.99 | 50 | 7.6 | 3.7 |
| 111 | 7/3/88 | 5641 | 16930 | 43 | 9 | 0.33 | 1.00 | 31 | 5.7 | 4.2 |
| 112 | 7/3/88 | 5650 | 16952 | 39 | 11 | 0.50 | 1.28 | 41 | 6.9 | 3.5 |
| 113 | 7/5/88 | 5711 | 16954 | 27 | 7 | 0.50 | 1.47 | 41 | 4.4 | 4.1 |
| 114 | 7/ 5/88 | 573 | 16936 | 33 | 9 | 0.50 | 1.53 | 41 | 5.1 | 1.8 |
| 115 | 7/ 5/88 | 5722 | 16935 | 35 | 15 | 0.50 | 1.38 | 41 | 7.2 | 1.8 |
| 116 | 7/5/88 | 5730 | 16958 | 37 | 18 | 0.50 | 1.42 | 41 | 7.2 | 1.1 |
| 117 | 7/ 6/88 | 5741 | 16938 | 37 | 6 | 0.50 | 1.52 | 41 | 7.0 | 1.9 |
| 118 | 7/ 6/88 | 5750 | 16924 | 34 | 8 | 0.50 | 1.53 | 41 | 7.5 | 2.0 |
| 119 | 7/ 6/88 | 5760 | 16942 | 37 | 11 | 0.50 | 1.63 | 41 | 7.4 | 0.9 |
| 120 | 7/ 6/88 | 5821 | 16945 | 37 | 13 | 0.50 | 1.54 | 40 | 6.8 | 0.9 |
| 121 | 7/ 6/88 | 5840 | 16948 | 36 | 16 | 0.50 | 1.46 | 40 | 6.4 | 1.2 |
| 122 | 7/6/88 | 5859 | 16951 | 34 | 18 | 0.50 | 1.47 | 40 | 6.5 | 1.7 |
| 123 | 7/7/88 | 5920 | 16953 | 32 | 6 | 0.50 | 1.50 | 40 | 6.5 | 1.6 |
| 124 | 7/7/88 | 5939 | 16956 | 30 | 9 | 0.50 | 1.54 | 40 | 6.2 | 1.5 |
| 125 | 717/88 | 5960 | 16959 | 28 | 12 | 0.50 | 1.52 | 40 | 6.5 | 1.6 |
| 126 | 7/7/88 | 6020 | 1703 | 27 | 14 | 0.50 | 1.59 | 20 | 6.7 | 1.2 |
| 127 | 7/8/88 | 6059 | 17129 | 32 | 7 | 0.50 | 1.52 | 40 | 6.7 | -0.5 |
| 128 | 7/8/88 | 6041 | 17127 | 33 | 9 | 0.50 | 1.48 | 40 | 6.4 | 0.2 |
| 129 | 7/8/88 | 6021 | 17122 | 35 | 12 | 0.50 | 1.44 | 40 | 6.5 | -0.7 |
| 130 | 7/8/88 | 601 | 17119 | 37 | 14 | 0.50 | 1.37 | 40 | 6.8 | -0.4 |
| 131 | 7/8/88 | 5941 | 17114 | 39 | 17 | 0.50 | 1.72 | 40 | 8.0 | -0.3 |
| 132 | 7/9/88 | 5920 | 17111 | 40 | 6 | 0.50 | 1.53 | 40 | 8.0 | -0.2 |
| 133 | 7/ 9/88 | 5860 | 1719 | 41 | 9 | 0.50 | 1.48 | 40 | 8.0 | -0.5 |
| 134 | 7/ 9/88 | 5841 | 1716 | 44 | 12 | 0.50 | 1.48 | 40 | 8.0 | -1.1 |
| 135 | 7/9/88 | 5821 | 1712 | 45 | 14 | 0.50 | 1.51 | 40 | 8.5 | -0.3 |
| 136 | 7/9/88 | 581 | 17058 | 46 | 17 | 0.50 | 1.64 | 41 | 9.1 | 2.1 |
| 137 | 7/10/88 | 5741 | 17054 | 46 | 6 | 0.50 | 1.53 | 41 | 8.5 | 2.7 |

Table B-l .-- Station data Al aska Conti nued.

| Haul | Date | Latitude Deg Min | Longitude Deg Min | Depth
 (M) | Time | $\begin{aligned} & \text { Duration } \\ & (\mathrm{Hr}) \end{aligned}$ | $\begin{gathered} \text { Distance } \\ (\text { nmi) } \end{gathered}$ | Strata ${ }^{\text {a }}$ | Temp. $\left({ }^{\circ} \mathrm{C}\right)$ | Temp.
 $\left({ }^{\circ} \mathrm{C}\right)^{\mathrm{b}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 138 | 7/10/88 | 5721 | 17052 | 44 | 9 | 0.50 | 1.52 | 41 | 8.4 | 3.4 |
| 139 | 7/10/88 | 572 | 17047 | 51 | 17 | 0.50 | 1.59 | 41 | 9.7 | 3.2 |
| 140 | 7/11/88 | 5640 | 17044 | 62 | 6 | 0.50 | 1.57 | 60 | 8.3 | 3.4 |
| 141 | 7/11/88 | 5622 | 17042 | 64 | 9 | 0.50 | 1.59 | 60 | 8.2 | 3.9 |
| 142 | 7/11/88 | 5640 | 17154 | 68 | 14 | 0.58 | 1.63 | 60 | 8.1 | 3.8 |
| 143 | 7/11/88 | 5660 | 1722 | 64 | 17 | 0.50 | 1.45 | 60 | 8.4 | 3.7 |
| 144 | 7/12/88 | 5721 | 1727 | 59 | 7 | 0.50 | 1.62 | 60 | 8.4 | 3.1 |
| 145 | 7/12/88 | 5740 | 17210 | 58 | 10 | 0.50 | 1.41 | 60 | 8.3 | 2.5 |
| 146 | 7/12/88 | 5760 | 17213 | 56 | 18 | 0.33 | 1.04 | 60 | 8.6 | 2.0 |
| 147 | 7/13/88 | 5821 | 17219 | 56 | 7 | 0.50 | 1.43 | 60 | 8.5 | 1.8 |
| 148 | 7/13/88 | 5843 | 17223 | 55 | 10 | 0.50 | 1.49 | 60 | 8.1 | 1.0 |
| 149 | 7/13/88 | 5860 | 17226 | 53 | 13 | 0.50 | 1.45 | 40 | 7.6 | 0.5 |
| 150 | 7/13/88 | 5920 | 17232 | 47 | 15 | 0.50 | 1.46 | 42 | 7.4 | -0.9 |
| 151 | 7/14/88 | 5742 | 17321 | 77 | 6 | 0.50 | 1.40 | 60 | 8.5 | 3.6 |
| 152 | 7/14/88 | 5721 | 17321 | 66 | 9 | 0.33 | 0.95 | 60 | 8.3 | 3.5 |
| 153 | 7/14/88 | 571 | 17315 | 76 | 12 | 0.50 | 1.45 | 60 | 8.1 | 3.5 |
| 154 | 7/20/88 | 5950 | 17255 | 43 | 7 | 0.50 | 1.45 | 42 | 7.2 | -1.0 |
| 155 | 7/20/88 | 5960 | 17240 | 36 | 9 | 0.50 | 1.48 | 42 | 7.2 | -0.1 |
| 156 | 7/20/88 | 6010 | 17259 | 31 | 12 | 0.50 | 1.51 | 42 | 7.4 | -9.0 |
| 157 | 7/20/88 | 6040 | 17250 | 23 | 16 | 0.50 | 1.42 | 40 | 5.2 | 2.9 |
| 158 | 7/20/88 | 6060 | 17249 | 36 | 19 | 0.50 | 1.61 | 40 | 7.4 | -0.5 |
| 159 | 7/21/88 | 6140 | 17330 | 37 | 7 | 0.50 | 1.50 | 74 | 7.2 | -1.6 |
| 160 | 7/21/88 | 6160 | 17331 | 32 | 10 | 0.50 | 1.58 | 74 | 7.3 | -1.6 |
| 161 | 7/21/88 | 621 | 17423 | 39 | 13 | 0.50 | 1.46 | 74 | 7.5 | -1.6 |
| 162 | 7/21/88 | 6141 | 17425 | 42 | 16 | 0.50 | 1.48 | 74 | 7.6 | -1.6 |
| 163 | 7/21/88 | 6121 | 17417 | 42 | 18 | 0.50 | 1.50 | 74 | 9.1 | -1.6 |
| 164 | 7/22/88 | 611 | 1749 | 45 | 7 | 0.50 | 1.51 | 40 | -9.0 | -1.5 |
| 165 | 7/22/88 | 6041 | 1749 | 47 | 10 | 0.50 | 1.47 | 40 | 7.8 | -1.2 |
| 166 | 7/22/88 | 6021 | 1745 | 49 | 12 | 0.50 | 1.50 | 42 | 8.2 | -1.3 |
| 167 | 7/22/88 | 6011 | 17420 | 55 | 14 | 0.50 | 1.49 | 42 | 9.0 | 0.3 |
| 168 | 7/22/88 | 601 | 173.58 | 53 | 17 | 0.50 | 1.50 | 42 | 9.5 | 0.1 |
| 169 | 7/22/88 | 5950 | 17414 | 58 | 19 | 0.50 | 1.49 | 61 | 9.9 | 1.2 |
| 170 | 7/23/88 | 5941 | 17354 | 57 | 7 | 0.50 | 1.51 | 61 | 8.1 | 1.4 |
| 171 | 7/23/88 | 5921 | 17349 | 60 | 9 | 0.50 | 1.49 | 61 | 8.2 | 1.3 |
| 172 | 7/23/88 | 592 | 17343 | 64 | 12 | 0.50 | 1.55 | 60 | 8.7 | 1.9 |
| 173 | 7/23/88 | 5842 | 17339 | 69 | 15 | 0.33 | 1.00 | 60 | 8.7 | 2.8 |
| 174 | 7/23/88 | 5844 | 17447 | 86 | 20 | 0.33 | 1.02 | 60 | 8.7 | 3.5 |
| 175 | 7/24/88 | 5860 | 1751 | 71 | 7 | 0.50 | 1.52 | 60 | 7.9 | 2.8 |
| 176 | 7/24/88 | 5920 | 1757 | 72 | 10 | 0.33 | 0.97 | 60 | 8.2 | 2.2 |
| 177 | 7/24/88 | 5941 | 1756 | 68 | 13 | 0.33 | 1.06 | 60 | 8.5 | 1.8 |
| 178 | 7/27/88 | 5960 | 17515 | 64 | 7 | 0.50 | 1.49 | 60 | 7.8 | 1.2 |
| 179 | 7/27/88 | 6020 | 17523 | 61 | 10 | 0.50 | 1.49 | 60 | 8.0 | 0.8 |
| 180 | 7/27/88 | 6040 | 17528 | 58 | 12 | 0.50 | 1.48 | 60 | 7.8 | 0.7 |
| 181 | 7/27/88 | 6060 | 17535 | 56 | 15 | 0.50 | 1.57 | 73 | 8.5 | -1.0 |
| 182 | 7/27/88 | 6120 | 17540 | 53 | 18 | 0.50 | 1.57 | 74 | -9.0 | -1.1 |
| 183 | 7/28/88 | 6160 | 17555 | 51 | 7 | 0.50 | 1.51 | 74 | 7.1 | -1.5 |

Table B-I.--Station data Al aska Continued.

| Haul | Date | Latitude Deg Min | Longitude Deg Min | Depth
 (M) | Time | Duration (Hr) | $\begin{gathered} \text { Distance } \\ (n m i) \end{gathered}$ | Strata ${ }^{\text {a }}$ | Surf. Temp. $\left({ }^{\circ} \mathrm{C}\right)$ | Gear Temp. $\left({ }^{\circ} \mathrm{C}\right)^{\mathrm{b}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 184 | 7/28/88 | 6141 | 17546 | 52 | 10 | 0.50 | 1.42 | 74 | 7.2 | -1.5 |
| 185 | 7/28/88 | 6140 | 17626 | 57 | 12 | 0.50 | 1.53 | 73 | 7.7 | -0.4 |
| 186 | 7/28/88 | 6121 | 17657 | 63 | 16 | 0.50 | 1.51 | 73 | 9.1 | 1.5 |
| 187 | 7/28/88 | 611 | 17658 | 66 | 19 | 0.50 | 1.34 | 73 | 8.5 | 0.5 |
| 188 | 7/29/88 | 6040 | 17646 | 71 | 7 | 0.50 | 1.45 | 60 | 8.2 | 1.5 |
| 189 | 7/29/88 | 6017 | 17642 | 75 | 11 | 0.50 | 1.40 | 60 | 8.6 | 1.4 |
| 190 | 7/29/88 | 601 | 17644 | 77 | 14 | 0.50 | 1.55 | 60 | 9.6 | 2.0 |
| 191 | 7/29/88 | 5941 | 17633 | 74 | 17 | 0.50 | 1.54 | 60 | 9.8 | 2.1 |
| 192 | 7/29/88 | 5921 | 17624 | 74 | 20 | 0.50 | 1.51 | 60 | 9.9 | 2.9 |
| 193 | 7/30/88 | 591 | 17618 | 75 | 8 | 0.50 | 1.48 | 60 | 9.2 | 2.5 |
| 194 | 7/30/88 | 5842 | 17613 | 75 | 11 | 0.50 | 1.52 | 60 | 9.3 | 2.9 |
| 195 | 8/1/88 | 562 | 16327 | 48 | 12 | 0.25 | 0.75 | -9 | -9.0 | -9.0 |
| 196 | 8/1/88 | 5560 | 16326 | 47 | 15 | 0.50 | 1.51 | -9 | -9.0 | -9.0 |
| 197 | 8/1/88 | 5560 | 16321 | 47 | 16 | 0.50 | 1.48 | -9 | -9.0 | -9.0 |
| 198 | 8/ 2/88 | 5544 | 16319 | 45 | 12 | 0.50 | 1.54 | -9 | -9.0 | -9.0 |
| 199 | 8/ $2 / 88$ | 5544 | 16314 | 44 | 14 | 0.50 | 1.56 | -9 | -9.0 | -9.0 |
| 200 | 8/ $2 / 88$ | 5547 | 16313 | 45 | 16 | 0.50 | 1.54 | -9 | -9.0 | -9.0 |
| 201 | 8/ 4/88 | 5546 | 16318 | 46 | 12 | 0.50 | 1.53 | -9 | -9.0 | -9.0 |
| 202 | 8/ 4/88 | 5549 | 16313 | 46 | 14 | 0.50 | 1.56 | -9 | -9.0 | -9.0 |
| 203 | 8/ 4/88 | 5548 | 16310 | 46 | 16 | 0.50 | 1.29 | -9 | -9.0 | -9.0 |
| 204 | 8/ 4/88 | 5549 | 16314 | 46 | 17 | 0.50 | 1.46 | -9 | -9.0 | -9.0 |
| 205 | 8/ 4/88 | 5548 | 16318 | 46 | 18 | 0.50 | 1.66 | -9 | -9.0 | -9.0 |
| 206 | 8/5/88 | 5543 | 16319 | 43 | 9 | 0.50 | 1.40 | -9 | -9.0 | -9.0 |
| 207 | 8/5/88 | 5543 | 16318 | 43 | 11 | 0.50 | 1.51 | -9 | -9.0 | -9.0 |
| 208 | 8/5/88 | 5543 | 16318 | 44 | 12 | 0.50 | 1.56 | -9 | -9.0 | -9.0 |
| 209 | 8/5/88 | 5544 | 16318 | 44 | 14 | 0.50 | 1.57 | -9 | -9.0 | -9.0 |
| 210 | 8/. 5/88 | 5542 | 16315 | 42 | 16 | 0.50 | 1.59 | -9 | -9.0 | -9.0 |
| 211 | 8/5/88 | 5542 | 16313 | 41 | 17 | 0.50 | 1.52 | -9 | -9.0 | -9.0 |
| 212 | 8/6/88 | 5545 | 16319 | 44 | 9 | 0.50 | 1.40 | -9 | 10.6 | -9.0 |
| 213 | 8/ 6/88 | 5544 | 16321 | 44 | 11 | 0.50 | 1.48 | -9 | -9.0 | -9.0 |
| 214 | 8/6/88 | 5545 | 16322 | 45 | 12 | 0.50 | 1.58 | -9 | -9.0 | -9.0 |
| 215 | 8/ 6/88 | 5545 | 16319 | 45 | 14 | 0.50 | 1.48 | -9 | -9.0 | -9.0 |
| 216 | 8/ 6/88 | 5545 | 16318 | 46 | 15 | 0.50 | 1.62 | -9 | -9.0 | -9.0 |
| 217 | 8/ 6/88 | 5546 | 16317 | 46 | 16 | 0.50 | 1.55 | -9 | -9.0 | -9.0 |

[^16]Table B-2.--Station data for the chartered vessel Ocean Hope 3 during the 1988 bottom traw survey.

| Haul | Date | Latitude
 Deg Min | Longitude Deg Min | Depth
 (M) | Time | Duration (Hr) | $\begin{gathered} \text { Distance } \\ (n m i) \end{gathered}$ | Strata ${ }^{\circ}$ | Surf. Temp. ($\left.{ }^{\circ} \mathrm{C}\right)$ | Gear
 Temp.
 $\left({ }^{\circ} \mathrm{C}\right)^{\mathrm{b}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | $6 / 3 / 88$ | 5560 | 16159 | 28 | 15 | 0.50 | 1.64 | -9 | 4.6 | 4.2 |
| 2 | 6/3/88 | 564 | 16141 | 26 | 17 | 0.50 | 1.14 | -9 | 4.0 | 4.2 |
| 3 | 6/3/88 | 5613 | 16129 | 30 | 20 | 0.50 | 1.57 | -9 | 5.3 | -9.0 |
| 4 | 6/ 4/88 | 5622 | 16055 | 30 | 7 | 0.50 | 1.57 | -9 | 5.1 | 3.2 |
| 5 | 6/4/88 | 5628 | 16038 | 29 | 9 | 0.50 | 1.50 | -9 | 5.3 | -9.0 |
| 6 | 6/ 4/88 | 5633 | 16025 | 26 | 10 | 0.50 | 1.42 | -9 | 5.1 | -9.0 |
| 7 | 6/ 4/88 | 5640 | 16015 | 30 | 12 | 0.50 | 1.68 | -9 | 4.5 | 3.6 |
| 8 | 6/4/88 | 5642 | 15945 | 21 | 16 | 0.50 | 1.67 | 10 | 4.9 | 4.2 |
| 9 | 6/5/88 | 571 | 1597 | 20 | 6 | 0.50 | 1.60 | 10 | 4.2 | 4.4 |
| 10 | 6/5/88 | 5721 | 1595 | 28 | 9 | 0.50 | 1.45 | 10 | 3.1 | 3.4 |
| 11 | 6/5/88 | 5742 | 1591 | 25 | 13 | 0.50 | 1.79 | 10 | 3.7 | 4.4 |
| 12 | 6/ 6/88 | 5843 | 1603 | 16 | 7 | 0.33 | 0.93 | -9 | 6.4 | -9.0 |
| 13 | 6/6/88 | 586 | 16012 | 26 | 15 | 0.50 | 1.93 | 10 | 3.4 | 3.2 |
| 14 | 6/ 6/88 | 581 | 16013 | 28 | 17 | 0.50 | 1.58 | 10 | 4.1 | 2.9 |
| 15 | 6/ 6/88 | 5740 | 16017 | 31 | 20 | 0.50 | 1.85 | 30 | -9.0 | 3.2 |
| 16 | 6/7/88 | 5722 | 16020 | 34 | 7 | 0.50 | 1.59 | 30 | 3.5 | 3.1 |
| 17 | 6/7/88 | 5659 | 16022 | 35 | 10 | 0.50 | 1.74 | 30 | 4.5 | 2.6 |
| 18 | 6/7/88 | 5640 | 16022 | 32 | 13 | 0.50 | 2.02 | 30 | 5.5 | 2.5 |
| 19 | 6/8/88 | 5621 | 16137 | 37 | 12 | 0.50 | 1.62 | 10 | 5.0 | 2.9 |
| 20 | 6/8/88 | 5641 | 16136 | 50 | 15 | 0.50 | 1.96 | 30 | 4.0 | 1.9 |
| 21 | 6/8/88 | 572 | 16134 | 38 | 18 | 0.50 | 1.86 | 30 | 5.4 | 1.9 |
| 22 | 6/ 9/88 | 5723 | 16132 | 32 | 7 | 0.50 | 2.03 | 30 | 4.6 | 2.3 |
| 23 | 6/9/88 | 5742 | 16131 | 29 | 9 | 0.50 | 1.82 | 10 | 3.8 | 3.0 |
| 24 | 6/ 9/88 | 5760 | 16130 | 30 | 12 | 0.50 | 1.65 | 10 | 3.3 | 2.7 |
| 25 | 6/ 9/88 | 5818 | 16126 | 20 | 14 | 0.50 | 1.69 | -9 | 5.7 | 5.2 |
| 26 | 6/9/88 | 5812 | 16131 | 25 | 19 | 0.30 | 1.21 | 10 | 5.2 | 5.2 |
| 27 | 6/10/88 | 5856 | 16243 | 15 | 7 | 0.25 | 0.68 | -9 | -9.0 | -9.0 |
| 28 | 6/10/88 | 5918 | 16243 | 14 | 11 | 0.33 | 1.33 | -9 | 6.9 | 6.3 |
| 29 | 6/10/88 | 5833 | 16252 | 17 | 17 | 0.33 | 1.06 | 10 | 3.5 | 3.4 |
| 30 | 6/10/88 | 5820 | 16242 | 18 | 19 | 0.50 | 1.99 | 10 | 3.4 | 3.2 |
| 31 | 6/11/88 | 583 | 16247 | 23 | 6 | 0.50 | 1.59 | 10 | -9.0 | -9.0 |
| 32 | 6/11/88 | 5741 | 16247 | 25 | 10 | 0.50 | 1.88 | 10 | 3.2 | 3.0 |
| 33 | 6/11/88 | 5719 | 16248 | 27 | 12 | 0.50 | 1.90 | 10 | 2.8 | 2.2 |
| 34 | 6/11/88 | 5660 | 16248 | 34 | 15 | 0.50 | 1.75 | 30 | 4.1 | 1.1 |
| 35 | 6/11/88 | 5640 | 16248 | 41 | 18 | 0.50 | 1.60 | 30 | 5.3 | 1.2 |
| 36 | 6/12/88 | 5619 | 16251 | 45 | 6 | 0.50 | 1.57 | 30 | 6.5 | 3.0 |
| 37 | 6/12/88 | 5560 | 16250 | 44. | 9 | 0.50 | 1.69 | 30 | 6.6 | 2.6 |
| 38 | 6/12/88 | 5541 | 16250 | 27 | 12 | 0.50 | 1.88 | 10 | 6.6 | 4.7 |
| 39 | 6/12/88 | 5519 | 16359 | 71 | 17 | 0.50 | 2.27 | 30 | 6.3 | 4.5 |
| 40 | 6/15/88 | 5543 | 1641 | 53 | 7 | 0.50 | 1.61 | 30 | 6.1 | 2.3 |
| 41 | 6/15/88 | 567 | 1644 | 51 | 10 | 0.50 | 1.86 | 30 | 6.2 | 1.9 |
| 42 | 6/15/88 | 5624 | 1642 | 48 | 12 | 0.50 | 1.46 | 30 | 7.1 | 2.3 |
| 43 | 6/15/88 | 5642 | 16359 | 42 | 15 | 0.50 | 1.51 | 30 | 6.2 | 2.0 |
| 44 | 6/15/88 | 572 | 16357 | 38 | 18 | 0.50 | 1.87 | 30 | 5.5 | 1.1 |
| 45 | 6/16/88 | 5718 | 16357 | 36 | 7 | 0.50 | 1.82 | 30 | 5.0 | 1.0 |

Table B-2.--Station data Ocean Hope 3 Continued.

| Haul | Date | Latitude Deg Min | Longitude Deg Min | Depth
 (M) | Time | Duration (Hr) | $\begin{gathered} \text { Distance } \\ (n \mathrm{mi}) \end{gathered}$ | Strata ${ }^{a}$ | Surf. Temp. (${ }^{\circ} \mathrm{C}$) | Gear Temp. $\left({ }^{\circ} \mathrm{C}\right)^{\mathrm{b}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 46 | 6/16/88 | 5743 | 16359 | 41 | 10 | 0.50 | 1.80 | 10 | 3.5 | 2.2 |
| 47 | 6/16/88 | 584 | 1644 | 26 | 13 | 0.50 | 1.76 | 10 | 2.8 | 2.6 |
| 48 | 6/16/88 | 5826 | 1644 | 22 | 15 | 0.50 | 1.63 | 10 | 3.6 | 3.5 |
| 49 | 6/16/88 | 5841 | 16358 | 19 | 18 | 0.50 | 1.57 | 10 | 5.0 | 4.8 |
| 50 | 6/17/88 | 5859 | 16356 | 15 | 7 | 0.50 | 1.91 | 10 | 5.5 | 5.0 |
| 51 | 6/17/88 | 5915 | 1642 | 13 | 9 | 0.50 | 2.09 | 10 | 6.4 | 6.0 |
| 52 | 6/17/88 | 5918 | 16514 | 13 | 13 | 0.33 | 1.02 | 20 | 4.3 | 4.2 |
| 53 | 6/17/88 | 594 | 16518 | 15 | 15 | 0.50 | 1.69 | 10 | 3.5 | 3.5 |
| 54 | 6/17/88 | 5840 | 16518 | 22 | 18 | 0.50 | 2.18 | 10 | 4.0 | 3.0 |
| 55 | 6/18/88 | 5820 | 16517 | 25 | 6 | 0.50 | 1.68 | 10 | 4.0 | 3.0 |
| 56 | 6/18/88 | 583 | 16515 | 28 | 9 | 0.50 | 1.57 | 10 | 3.6 | 3.2 |
| 57 | 6/18/88 | 5738 | 16515 | 35 | 12 | 0.50 | 1.00 | 30 | 5.2 | 0.7 |
| 58 | 6/18/88 | 5720 | 16514 | 38 | 14 | 0.50 | 1.74 | 30 | 6.0 | 0.9 |
| 59 | 6/18/88 | 571 | 16514 | 40 | 17 | 0.50 | 1.69 | 30 | 6.0 | 1.3 |
| 60 | 6/18/88 | 5640 | 16513 | 43 | 19 | 0.50 | 1.64 | 30 | 6.2 | 1.0 |
| 61 | 6/19/88 | 5623 | 1655 | 48 | 7 | 0.50 | 1.58 | 30 | 6.4 | 1.6 |
| 62 | 6/19/88 | 5559 | 16512 | 55 | 10 | 0.50 | 1.75 | 30 | 6.8 | 3.4 |
| 63 | 6/19/88 | 5538 | 16511 | 62 | 12 | 0.50 | 1.72 | 50 | 6.5 | 3.5 |
| 64 | 6/19/88 | 5520 | 16511 | 62 | 15 | 0.50 | 1.98 | 50 | 7.0 | 4.2 |
| 65 | 6/19/88 | 5459 | 16510 | 62 | 18 | 0.50 | 1.67 | 50 | 6.5 | 4.2 |
| 66 | 6/19/88 | 5443 | 1659 | 47 | 20 | 0.50 | 1.47 | 30 | 6.5 | 4.1 |
| 67 | 6/20/88 | 552 | 16619 | 80 | 7 | 0.50 | 1.68 | 50 | 6.0 | 3.9 |
| 68 | 6/20/88 | 5521 | 16621 | 75 | 9 | 0.50 | 1.98 | 50 | 7.2 | 3.7 |
| 69 | 6/20/88 | 5545 | 16624 | 73 | 12 | 0.50 | 1.70 | 50 | 6.7 | 5.0 |
| 70 | 6/20/88 | 563 | 16625 | 69 | 15 | 0.50 | 1.59 | -9 | 7.0 | 5.5 |
| 71 | 6/20/88 | 564 | 16626 | 68 | 16 | 0.50 | 1.91 | 50 | 6.8 | 4.1 |
| 72 | 6/20/88 | 5620 | 16624 | 58 | 19 | 0.50 | 2.25 | 30 | 7.0 | 3.9 |
| 73 | 6/21/88 | 5643 | 16622 | 45 | 7 | 0.50 | 1.67 | 30 | 6.7 | 2.0 |
| 74 | 6/21/88 | 576 | 16630 | 41 | 10 | 0.50 | 1.66 | 30 | 6.5 | 1.1 |
| 75 | 6/21/88 | 5725 | 16629 | 38 | 12 | 0.50 | 2.03 | 30 | 5.8 | 1.1 |
| 76 | 6/21/88 | 5739 | 16630 | 37 | 15 | 0.50 | 1.35 | 30 | 5.0 | 1.7 |
| 77 | 6/21/88 | 5756 | 16629 | 32 | 18 | 0.50 | 1.71 | 30 | 3.8 | 1.8 |
| 78 | 6/22/88 | 5837 | 16635 | 24 | 6 | 0.50 | 1.99 | 20 | 3.2 | 2.4 |
| 79 | 6/22/88 | 5819 | 16635 | 27 | 9 | 0.50 | 1.79 | 10 | 3.0 | 2.0 |
| 80 | 6/26/88 | 5525 | 16734 | 79 | 7 | 0.50 | 1.75 | 50 | 6.7 | 4.3 |
| 81 | 6/26/88 | 5542 | 16736 | 75 | 10 | 0.50 | 1.89 | 50 | 6.8 | -9.0 |
| 82 | 6/26/88 | 564 | 16739 | 76 | 13 | 0.50 | 2.12 | 50 | 6.8 | 4.0 |
| 83 | 6/26/88 | 5623 | 16739 | 70 | 15 | 0.50 | 1.71 | 50 | 8.1 | 3.5 |
| 84 | 6/26/88 | 5643 | 16741 | 53 | 18 | 0.50 | 1.82 | 30 | 9.9 | 2.6 |
| 85 | 6/27/88 | 572 | 16743 | 43 | 7 | 0.50 | 1.65 | 30 | 6.8 | 1.8 |
| 86 | 6/27/88 | 5719 | 16744 | 41 | 9 | 0.50 | 1.62 | 30 | 6.5 | 1.0 |
| 87 | 6/27/88 | 5742 | 16747 | 35 | 12 | 0.50 | 1.68 | 30 | 5.7 | 1.5 |
| 88 | 6/27/88 | 581 | 16749 | 37 | 15 | 0.58 | 1.75 | 40 | 5.0 | 0.7 |
| 89 | 6/27/88 | 5820 | 167. 50 | 34 | 17 | 0.50 | 2.13 | 40 | 5.6 | 1.6 |
| 90 | 6/28/88 | 5844 | 16752 | 25 | 7 | 0.50 | 1.61 | 20 | 4.8 | 2.9 |
| 91 | 6/28/88 | 591 | 16753 | 23 | 9 | 0.50 | 1.70 | 20 | 4.8 | 3.0 |

Table B-2.--Station data Ocean Hope 3 Continued.

| Haul | Date | Latitude Deg Min | Longitude Deg Min | Depth
 (M) | Time | Duration (Hr) | $\begin{gathered} \text { Distance } \\ (n \mathrm{ni}) \end{gathered}$ | Strata ${ }^{\text {a }}$ | Surf. Temp. (${ }^{\circ} \mathrm{C}$) | Gear Temp. $\left({ }^{\circ} \mathrm{C}\right)^{\mathrm{B}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 92 | 6/28/88 | 5921 | 16755 | 21 | 11 | 0.50 | 1.92 | 20 | 5.6 | 3.2 |
| 93 | 6/28/88 | 5941 | 16758 | 19 | 14 | 0.50 | 1.76 | 20 | 6.4 | 4.0 |
| 94 | 6/28/88 | 603 | 16760 | 14 | 17 | 0.50 | 1.49 | 20 | 5.7 | 5.3 |
| 95 | 6/29/88 | 6020 | 16760 | 17 | 7 | 0.50 | 1.37 | 20 | 5.6 | 5.6 |
| 96 | 6/29/88 | 6020 | 16920 | 24 | 12 | 0.50 | 1.70 | 20 | 5.0 | 2.4 |
| 97 | 6/29/88 | 601 | 16920 | 26 | 14 | 0.50 | 1.64 | 20 | 5.6 | 1.8 |
| 98 | 6/29/88 | 5942 | 16917 | 26 | 16 | 0.50 | 1.53 | 20 | 5.6 | 2.0 |
| 99 | 6/29/88 | 5922 | 16915 | 28 | 19 | 0.50 | 1.57 | 20 | 5.5 | 2.3 |
| 100 | 6/30/88 | 5856 | 16912 | 33 | 7 | 0.50 | 1.55 | 40 | 4.8 | 2.2 |
| 101 | 6/30/88 | 5836 | 1698 | 36 | 9 | 0.50 | 1.51 | 40 | 5.2 | 2.0 |
| 102 | 6/30/88 | 5818 | 1697 | 38 | 11 | 0.50 | 1.55 | 40 | 6.0 | 1.2 |
| 103 | 6/30/88 | 5756 | 1694 | 38 | 14 | 0.50 | 1.73 | 41 | 6.4 | 1.0 |
| 104 | 6/30/88 | 5740 | 1692 | 38 | 16 | 0.50 | 1.54 | 41 | 6.8 | 2.2 |
| 105 | 7/1/88 | 5730 | 16921 | 40 | 7 | 0.50 | 1.49 | 41 | 7.0 | 1.7 |
| 106 | 7/1/88 | 5720 | 1691 | 40 | 9 | 0.50 | 1.54 | 41 | 7.0 | 1.8 |
| 107 | 7/1/88 | 5710 | 16920 | 40 | 11 | 0.50 | 1.81 | 41 | 7.3 | 1.7 |
| 108 | 7/1/88 | 5660 | 16858 | 45 | 14 | 0.50 | 1.66 | 31 | 7.4 | 1.8 |
| 109 | 7/1/88 | 5650 | 16918 | 45 | 16 | 0.50 | 1.39 | 31 | 7.6 | 2.2 |
| 110 | 7/ 2/88 | 5638 | 16848 | 61 | 7 | 0.50 | 1.26 | 31 | -9.0 | -9.0 |
| 111 | 7/2/88 | 5631 | 16910 | 54 | 9 | 0.25 | 0.75 | 31 | 7.6 | 2.9 |
| 112 | 7/ 2/88 | 5621 | 16855 | 73 | 11 | 0.50 | 1.64 | 50 | 7.8 | 4.0 |
| 113 | 7/ 2/88 | 5621 | 1704 | 61 | 16 | 0.50 | 1.82 | 50 | 8.2 | 3.5 |
| 114 | 7/ 2/88 | 5638 | 1708 | 56 | 18 | 0.50 | 1.68 | 41 | 8.0 | 3.5 |
| 115 | 7/ $3 / 88$ | 5651 | 17031 | 57 | 7 | 0.50 | 1.69 | 41 | 6.9 | 3.5 |
| 116 | 7/3/88 | 571 | 17011 | 37 | 10 | 0.50 | 1.54 | 41 | 5.7 | 3.9 |
| 117 | 7/ 4/88 | $57 \quad 7$ | 17029 | 32 | 15 | 0.50 | 1.28 | 41 | 7.1 | 4.1 |
| 118 | 7/ 4/88 | 5717 | 17017 | 30 | 17 | 0.50 | 1.14 | 41 | 4.8 | 4.4 |
| 119 | 7/5/88 | 5730 | 17034 | 42 | 7 | 0.50 | 1.59 | 41 | 6.5 | 2.7 |
| 120 | 7/5/88 | 5741 | 17018 | 41 | 10 | 0.50 | 1.82 | 41 | 6.8 | 1.5 |
| 121 | 7/ 5/88 | 5752 | 17040 | 45 | 12 | 0.50 | 1.62 | 41 | 7.0 | 1.5 |
| 122 | 7/5/88 | 5751 | 16960 | 41 | 14 | 0.50 | 1.39 | 41 | 6.8 | 0.6 |
| 123 | 7/ 5/88 | 581 | 17017 | 42 | 16 | 0.50 | 1.35 | 41 | 6.7 | -0.2 |
| 124 | 7/ 6/88 | 5819 | 17021 | 42 | 7 | 0.50 | 1.44 | 40 | 6.5 | -0.1 |
| 125 | 7/6/88 | 5840 | 17027 | 42 | 10 | 0.50 | 1.96 | 40 | 6.2 | 0.4 |
| 126 | 7/ 6/88 | 591 | 17030 | 40 | 12 | 0.50 | 1.67 | 40 | 5.4 | 1.0 |
| 127 | 7/ 6/88 | 5920 | 17032 | 39 | 15 | 0.50 | 1.54 | 40 | 5.4 | 1.2 |
| 128 | 7/ 6/88 | 5941 | 17034 | 38 | 18 | 0.50 | 1.47 | 40 | 6.1 | 0.5 |
| 129 | 7/7/88 | 601 | 17037 | 36 | 7 | 0.50 | 1.37 | 40 | 5.8 | 0.4 |
| 130 | 7/7/88 | 6021 | 17041 | 35 | 9 | 0.50 | 1.54 | 40 | 6.2 | 0.4 |
| 131 | 7/7/88 | 6033 | 17160 | 35 | 15 | 0.50 | 1.79 | 40 | 5.9 | -0.8 |
| 132 | 7/7/88 | 6055 | 17210 | 36 | 18 | 0.50 | 1.58 | 40 | 5.8 | -0.9 |
| 133 | 7/8/88 | 6019 | 1727 | 27 | 14 | 0.37 | 1.32 | 42 | 6.4 | -0.5 |
| 134 | 7/8/88 | 6011 | 17219 | 32 | 16 | 0.50 | 1.22 | 42 | 5.9 | 1.9 |
| 135 | 7/8/88 | 601 | 17160 | 37 | 18 | 0.50 | 1.31 | 42 | 7.3 | -0.2 |
| 136 | 7/9/88 | 5949 | 17215 | 43 | 7 | 0.50 | 1.47 | 42 | 7.1 | -1.0 |
| 137 | 7/9/88 | 5937 | 17154 | 44 | 9 | 0.50 | 1.65 | 42 | 7.6 | -0.7 |

Table B-2.--Station data Ocean Hope 3 Continued.

| Haul | Date | Latitude Deg Min | Longitude Deg Min | Depth
 (M) | Time | Duration (Hr) | $\begin{gathered} \text { Distance } \\ (n \mathrm{mi}) \end{gathered}$ | Strata ${ }^{\text {a }}$ | Surf. Temp. ($\left.{ }^{\circ} \mathrm{C}\right)$ | Gear Temp. $\left({ }^{\circ} \mathrm{C}\right)^{b}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 138 | 7/ 9/88 | 5920 | 17152 | 45 | 11 | 0.50 | 1.46 | 42 | 8.1 | -1.0 |
| 139 | 7/ 9/88 | 591 | 17148 | 49 | 14 | 0.50 | 1.38 | 40 | 8.2 | -0.7 |
| 140 | 7/9/88 | 5841 | 17144 | 53 | 17 | 0.50 | 1.48 | 40 | 9.4 | 0.3 |
| 141 | 7/10/88 | 5819 | 17131 | 54 | 6 | 0.50 | 1.46 | 40 | 8.7 | 1.8 |
| 142 | 7/10/88 | 5759 | 17136 | 55 | 9 | 0.50 | 1.53 | 40 | 8.3 | 1.8 |
| 143 | 7/10/88 | 5739 | 17133 | 57 | 12 | 0.50 | 1.54 | 40 | 8.4 | 2.5 |
| 144 | 7/10/88 | 5719 | 17113 | 57 | 14 | 0.50 | 1.51 | 40 | 8.6 | 3.5 |
| 145 | 7/10/88 | 5660 | 17124 | 62 | 17 | 0.50 | 1.78 | 60 | 8.9 | 3.9 |
| 146 | 7/11/88 | 5640 | 17124 | 67 | 7 | 0.50 | 1.42 | 60 | 7.8 | 4.0 |
| 147 | 7/11/88 | 5641 | 17233 | 74 | 11 | 0.50 | 1.46 | 60 | 7.8 | 4.0 |
| 148 | 7/11/88 | 571 | 17238 | 68 | 14 | 0.50 | 1.49 | 60 | 8.1 | 4.0 |
| 149 | 7/11/88 | 5720 | 17242 | 65 | 17 | 0.50 | 1.65 | 60 | 8.1 | 3.4 |
| 150 | 7/12/88 | 5743 | 17247 | 67 | 7 | 0.50 | 1.51 | 60 | 7.9 | 3.7 |
| 151 | 7/12/88 | 582 | 17252 | 61 | 9 | 0.50 | 1.43 | 60 | 7.9 | 2.2 |
| 152 | 7/12/88 | 5822 | 17257 | 62 | 12 | 0.50 | 1.63 | 60 | 8.0 | 2.0 |
| 153 | 7/12/88 | 5841 | 1731 | 63 | 15 | 0.50 | 1.79 | 60 | 8.0 | 2.0 |
| 154 | 7/12/88 | 595 | 1737 | 60 | 18 | 0.50 | 1.62 | 60 | 7.3 | 1.5 |
| 155 | 7/13/88 | 5921 | 1737 | 56 | 6 | 0.50 | 1.39 | 42 | 7.3 | 1.1 |
| 156 | 7/13/88 | 5931 | 17328 | 58 | 9 | 0.50 | 1.59 | 42 | 7.2 | 1.0 |
| 157 | 7/13/88 | 5940 | 17313 | 54 | 11 | 0.50 | 1.46 | 42 | 6.9 | 0.0 |
| 158 | 7/13/88 | 5939 | 17238 | 48 | 13 | 0.50 | 1.71 | 42 | 7.2 | -0.8 |
| 159 | 7/13/88 | 5929 | 17254 | 53 | 15 | 0.50 | 1.52 | 42 | 7.1 | 0.3 |
| 160 | 7/14/88 | 5822 | 1741 | 68 | 6 | 0.50 | 1.56 | 60 | 8.2 | -9.0 |
| 161 | 7/14/88 | 5816 | 17315 | 70 | 8 | 0.50 | 1.50 | 60 | 8.2 | 3.5 |
| 162 | 7/14/88 | 589 | 17321 | 70 | 11 | 0.50 | 1.37 | 60 | 8.1 | 3.5 |
| 163 | 7/20/88 | 5953 | 17335 | 53 | 7 | 0.50 | 1.45 | 42 | 7.1 | -0.9 |
| 164 | 7/20/88 | 604 | 17320 | 41 | 9 | 0.40 | 1.29 | 42 | 7.2 | -0.4 |
| 165 | 7/20/88 | 6011 | 17340 | 44 | 12 | 0.10 | 0.41 | -9 | 7.2 | -0.8 |
| 166 | 7/20/88 | 6013 | 17341 | 43 | 13 | 0.25 | 0.62 | -9 | 7.2 | -0.8 |
| 167 | 7/20/88 | 6010 | 17349 | 50 | 15 | 0.25 | 0.65 | -9 | 7.2 | -0.8 |
| 168 | 7/20/88 | 6021 | 17325 | 34 | 18 | 0.25 | 0.67 | 42 | 6.5 | 0.4 |
| 169 | 7/21/88 | 6042 | 17331 | 38 | 7 | 0.25 | 0.66 | 40 | 5.8 | -0.8 |
| 170 | 7/21/88 | 611 | 17331 | 43 | 10 | 0.50 | 1.46 | 40 | 6.5 | -1.1 |
| 171 | 7/21/88 | 6123 | 17332 | 41 | 13 | 0.50 | 1.43 | 74 | 6.8 | -1.3 |
| 172 | 7/21/88 | 6156 | 17453 | 44 | 19 | 0.50 | 1.64 | 74 | 6.6 | -1.5 |
| 173 | 7/22/88 | 6140 | 1751 | 48 | 7 | 0.50 | 1.49 | 74 | 6.0 | -1.5 |
| 174 | 7/22/88 | 6122 | 17454 | 48 | 9 | 0.50 | 1.56 | 74 | 6.4 | -1.4 |
| 175 | 7/22/88 | 613 | 17453 | 51 | 12 | 0.50 | 1.49 | 74 | 6.6 | -1.3 |
| 176 | 7/22/88 | 6041 | 17448 | 55 | 14 | 0.50 | 1.38 | 40 | 6.5 | -0.4 |
| 177 | 7/22/88 | 6021 | 17441 | 57 | 17 | 0.50 | 1.62 | 61 | 6.9 | 0.6 |
| 178 | 7/23/88 | 5956 | 17439 | 62 | 7 | 0.50 | 1.53 | 61 | 7.8 | 1.6 |
| 179 | 7/23/88 | 5935 | 17432 | 66 | 9 | 0.50 | 1.59 | 61 | 8.0 | 2.0 |
| 180 | 7/23/88 | 5918 | 17429 | 68 | 11 | 0.50 | 1.45 | 61 | 7.8 | 2.1 |
| 181 | 7/23/88 | 591 | 17425 | 71 | 14 | 0.50 | 1.57 | 60 | 8.5 | 2.9 |
| 182 | 7/23/88 | 5842 | 17423 | 97 | 17 | 0.50 | 1.54 | 60 | 8.5 | 3.5 |
| 183 | 7/24/88 | 5839 | 17529 | 76 | 7 | 0.50 | 1.38 | 60 | 8.0 | 2.8 |

Table B-2.--Station data Ocean Hope 3 Continued.

| Haul | Date | Latitude Deg Min | Longitude Deg Min | Depth
 (M) | Time | $\begin{gathered} \text { Duration } \\ (\mathrm{Hr}) \end{gathered}$ | $\begin{gathered} \text { Distance } \\ (\text { nmi) } \end{gathered}$ | Strata ${ }^{\text {a }}$ | Surf. Temp. (${ }^{\circ} \mathrm{C}$) | Gear Temp. $\left({ }^{\circ} \mathrm{C}\right)^{\mathrm{D}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 184 | 7/24/88 | 5860 | 17544 | 75 | 10 | 0.50 | 1.45 | 60 | 8.4 | 2.4 |
| 185 | 7/24/88 | 5919 | 17544 | 77 | 13 | 0.50 | 1.56 | 60 | 7.7 | 2.2 |
| 186 | 7/27/88 | 5942 | 17551 | 77 | 8 | 0.50 | 1.39 | 60 | 8.0 | 2.0 |
| 187 | 7/27/88 | 601 | 17556 | 73 | 11 | 0.50 | 1.73 | 60 | 7.8 | 1.8 |
| 188 | 7/27/88 | 6023 | 1764 | 68 | 14 | 0.50 | 1.96 | 60 | 7.5 | 1.3 |
| 189 | 7/27/88 | 6041 | 17612 | 67 | 16 | 0.50 | 1.71 | 60 | 7.7 | 0.8 |
| 190 | 7/27/88 | 612 | 17618 | 63 | 19 | 0.50 | 1.54 | 73 | 7.1 | 0.3 |
| 191 | 7/28/88 | 6121 | 17618 | 60 | 7 | 0.50 | 1.48 | 73 | 7.1 | 0.9 |
| 192 | 7/28/88 | 6060 | 17737 | 76 | 13 | 0.50 | 1.51 | 73 | 7.4 | 1.4 |
| 193 | 7/28/88 | 6041 | 17810 | 91 | 16 | 0.50 | 1.59 | 60 | 7.3 | 2.3 |
| 194 | 7/28/88 | 6039 | 17736 | 86 | 18 | 0.50 | 1.38 | 60 | 8.2 | 1.7 |
| 195 | 7/29/88 | 6022 | 17724 | 84 | 7 | 0.50 | 1.48 | 60 | 7.0 | 1.8 |
| 196 | 7/29/88 | 601 | 17754 | 80 | 10 | 0.50 | 1.62 | 60 | 7.8 | 2.0 |
| 197 | 7/29/88 | 5960 | 17715 | 76 | 13 | 0.50 | 1.52 | 60 | 7.5 | 2.1 |
| 198 | 7/29/88 | 5941 | 1779 | 96 | 16 | 0.50 | 1.52 | 60 | 8.9 | 2.6 |
| 199 | 7/29/88 | 5921 | 1775 | 84 | 18 | 0.50 | 1.32 | 60 | 8.0 | 2.5 |
| 200 | 7/30/88 | 591 | 17734 | 76 | 7 | 0.50 | 1.43 | 60 | 8.5 | 3.0 |
| 201 | 7/30/88 | 5860 | 17659 | 76 | 9 | 0.50 | 1.56 | 60 | 9.0 | 2.6 |
| 202 | 7/30/88 | 5842 | 17652 | 75 | 11 | 0.50 | 1.46 | 60 | 9.2 | 3.2 |
| 203 | 8/ 1/88 | 5560 | 16326 | 50 | 14 | 0.50 | 1.48 | -9 | 11.2 | 3.2 |
| 204 | 8/1/88 | 5559 | 16319 | 49 | 16 | 0.50 | 1.45 | -9 | -9.0 | -9.0 |
| 205 | 8/ 2/88 | 5544 | 16319 | 47 | 12 | 0.50 | 1.57 | -9 | -9.0 | -9.0 |
| 206 | 8/ 2/88 | 5544 | 16314 | 46 | 14 | 0.50 | 1.47 | -9 | -9.0 | -9.0 |
| 207 | 8/ 2/88 | 5547 | 16313 | 47 | 16 | 0.50 | 1.50 | -9 | -9.0 | -9.0 |
| 208 | 8/ 4/88 | 5546 | 16318 | 47 | 12 | 0.50 | 1.53 | -9 | -9.0 | -9.0 |
| 209 | 8/ 4/88 | 5549 | 16313 | 49 | 14 | 0.50 | 1.78 | -9 | -9.0 | -9.0 |
| 210 | 8/ 4/88 | 5548 | 16310 | 47 | 15 | 0.50 | 1.28 | -9 | -9.0 | -9.0 |
| 211 | 8/ 4/88 | 5549 | 16314 | 49 | 17 | 0.50 | 1.33 | -9 | 10.2 | -9.0 |
| 212 | 8/ 4/88 | 5548 | 16317 | 49 | 18 | 0.50 | 1.47 | -9 | -9.0 | -9.0 |
| 213 | 8/5/88 | 5542 | 16319 | 44 | 9 | 0.50 | 1.56 | -9 | 10.3 | -9.0 |
| 214 | 8/ 5/88 | 5543 | 16318 | 45 | 11 | 0.50 | 1.43 | -9 | 10.5 | -9.0 |
| 215 | 8/5/88 | 5543 | 16318 | 46 | 12 | 0.50 | 1.50 | -9 | -9.0 | -9.0 |
| 216 | 8/ 5/88 | 5543 | 16318 | 46 | 14 | 0.50 | 1.58 | -9 | 10.5 | -9.0 |
| 217 | 8/5/88 | 5542 | 16315 | 44 | 15 | 0.50 | 1.67 | -9 | 10.3 | -9.0 |
| 218 | 8/5/88 | 5542 | 16312 | 43 | 17 | 0.50 | 1.70 | -9 | 10.3 | -9.0 |
| 219 | 8/ 6/88 | 5545 | 16318 | 46 | 9 | 0.50 | 1.28 | -9 | 10.5 | -9.0 |
| 220 | 8/6/88 | 5544 | 16320 | 46 | 10 | 0.50 | 1.32 | -9 | 10.6 | -9.0 |
| 221 | 8/ 6/88 | 5544 | 16322 | 46 | 12 | 0.50 | 1.80 | -9 | 10.6 | -9.0 |
| 222 | 8/6/88 | 5546 | 16318 | 48 | 14 | 0.50 | 1.46 | -9 | 10.8 | -9.0 |
| 223 | 8/ 6/88 | 5546 | 16318 | 48 | 15 | 0.50 | 1.58 | -9 | -9.0 | -9.0 |
| 224 | 8/6/88 | 5546 | 16317 | 48 | 16 | 0.50 | 1.56 | -9 | -9.0 | -9.0 |

Hauls with a stratum desi gnator of -9 were not used in the analysis due to bad performance, bei ng outsi de the standard area, or part of another experiment.
${ }^{\text {b }}$ A val ue of -9.0 indi cates no temperature was taken.

Table B-3.--Station data for the NOAA vessel MIIer Freenan during the 1988 bottom traw survey.

| Haul | Date | Latitude
 Deg. Min | Longitude Deg Min | Depth
 (M) | | $\begin{aligned} & \text { Duration } \\ & (\mathrm{Hr}) \end{aligned}$ | $\begin{gathered} \text { Distance } \\ (\mathrm{nmi}) \end{gathered}$ | Strata | Surf. Temp. $\left({ }^{\circ} \mathrm{C}\right)$ | $\begin{aligned} & \hline \text { Gear } \\ & \text { Temp. } \end{aligned}$ $\left({ }^{\circ} \mathrm{C}\right)$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 49 | 8/20/88 | 6310 | 16543 | 13 | 17 | 0.30 | 0.95 | 71 | 12.9 | 10.3 |
| 86 | 8/23/88 | 6260 | 16732 | 19 | 17 | 0.50 | 1.61 | 71 | 10.1 | 1.7 |
| 87 | 8/23/88 | 6241 | 16651 | 16 | 21 | 0.50 | 1.53 | 71 | 11.1 | 10.0 |
| 88 | 8/24/88 | 6221 | 16726 | 15 | 1 | 0.50 | 1.52 | 71 | 10.2 | 3.9 |
| 89 | 8/24/88 | 621 | 16654 | 14 | 4 | 0.50 | 1.54 | 71 | 11.5 | 10.9 |
| 90 | 8/24/88 | 6141 | 16727 | 14 | 7 | 0.50 | 1.58 | 71 | 10.7 | 10.4 |
| 91 | 8/24/88 | 6121 | 16655 | 11 | 11 | 0.50 | 1.46 | 71 | 11.6 | 11.6 |
| 92 | 8/25/88 | 6040 | 16636 | 11 | 10 | 0.50 | 1.66 | 71 | 11.2 | 11.0 |
| 93 | 8/25/88 | 6041 | 1681 | 16 | 14 | 0.50 | 1.55 | 71 | 9.7 | 9.5 |
| 94 | 8/25/88 | 611 | 16846 | 21 | 18 | 0.50 | 1.55 | 71 | 8.7 | 8.5 |
| 95 | 8/25/88 | 6120 | 16929 | 23 | 21 | 0.50 | 1.57 | 71 | 8.6 | 7.2 |
| 96 | 8/25/88 | 6140 | 17012 | 26 | 24 | 0.50 | 1.52 | 71 | 8.8 | 2.1 |
| 97 | 8/26/88 | 6160 | 16935 | 24 | 3 | 0.50 | 1.54 | 71 | 8.6 | 4.5 |
| 98 | 8/26/88 | 6220 | 17016 | 23 | 6 | 0.50 | 1.63 | 71 | 8.9 | 0.7 |
| 99 | 8/26/88 | 6240 | 16938 | 23 | 9 | 0.50 | 1.71 | 71 | 9.1 | 0.7 |
| 100 | 8/26/88 | 6256 | 17032 | 24 | 13 | 0.50 | 1.57 | 71 | 8.1 | -0.9 |
| 101 | 8/26/88 | 6241 | 17060 | 26 | 16 | 0.50 | 1.62 | 71 | 8.6 | -1.0 |
| 102 | 8/26/88 | 6260 | 17146 | 31 | 19 | 0.50 | 1.56 | 71 | 8.3 | -1.3 |
| 103 | 8/26/88 | 6320 | 17233 | 36 | 22 | 0.50 | 1.61 | 72 | 7.7 | -1.4 |
| 104 | 8/27/88 | 632 | 17318 | 39 | 2 | 0.50 | 1.50 | 72 | 7.7 | -1.5 |
| 105 | 8/27/88 | 6321 | 1741 | 43 | 5 | 0.50 | 1.58 | 72 | 7.6 | -1.6 |
| 106 | 8/27/88 | 631 | 17444 | 45 | 9 | 0.50 | 1.44 | 72 | 7.2 | -1.4 |
| 107 | 8/27/88 | 6241 | 17524 | 45 | 12 | 0.50 | 1.54 | 72 | 7.4 | -1.5 |
| 108 | 8/27/88 | 6221 | 1761 | 51 | 15 | 0.50 | 1.56 | 72 | 7.4 | -1.5 |
| 109 | 8/27/88 | 6221 | 17436 | 41 | 19 | 0.50 | 1.55 | 72 | 8.1 | -1.6 |
| 110 | 8/27/88 | 6241 | 17357 | 40 | 21 | 0.50 | 1.51 | 72 | 7.8 | -1.5 |
| 111 | 8/28/88 | 6240 | 17227 | 31 | 2 | 0.50 | 1.77 | 72 | 8.6 | -1.6 |
| 112 | 8/28/88 | 6221 | 1738 | 34 | 5 | 0.50 | 1.68 | 72 | 8.7 | -1.6 |
| 117 | 8/28/88 | 6160 | 17223 | 32 | 20 | 0.50 | 1.59 | 72 | 8.9 | -1.3 |
| 118 | 8/28/88 | 6220 | 17143 | 27 | 23 | 0.50 | 1.63 | 71 | 9.0 | -1.1 |
| 119 | 8/29/88 | 6160 | 17059 | 28. | 2 | 0.50 | 1.52 | 71 | 9.1 | 1.4 |
| 120 | 8/29/88 | 6141 | 17133 | 32 | 5 | 0.50 | 1.74 | 72 | 8.9 | -0.6 |
| 121 | 8/29/88 | 6120 | 17212 | 36 | 8 | 0.50 | 1.58 | 72 | 8.7 | -0.2 |
| 122 | 8/29/88 | 6120 | 17050 | 28 | 13 | 0.50 | 1.55 | 72 | 8.1 | 0.6 |
| 123 | 8/29/88 | 60.60 | 1702 | 27 | 16 | 0.50 | 1.58 | 71 | 8.7 | 2.5 |
| 124 | 8/29/88 | 6140 | 16850 | 20 | 21 | 0.50 | 1.58 | 71 | 9.1 | 7.0 |
| 125 | 8/30/88 | 6120 | 16810 | 17 | 1 | 0.50 | 1.76 | 71 | 9.2 | 9.5 |
| 126 | 8/30/88 | 6040 | 16923 | 24 | 6 | 0.50 | 1.52 | 71 | 8.2 | 5.0 |
| 127 | 8/30/88 | 6040 | 17044 | 33 | 10 | 0.50 | 1.43 | 72 | 8.5 | 1.0 |
| 128 | 9/3/88 | 5415 | 16613 | 218 | 22 | 0.50 | 1.23 | 81 | 7.7 | 3.7 |
| 129 | 9/ 4/88 | 5423 | 1662 | 310 | 4 | 0.50 | 1.28 | 83 | 7.6 | -9.0 |
| 130 | 9/ 4/88 | 5430 | 16549 | 233 | 7 | 0.50 | 1.30 | 81 | 9.0 | 4.4 |
| 131 | 9/ 4/88 | 5436 | 16542 | 203 | 10 | 0.50 | 0.96 | 81 | 8.3 | 3.6 |
| 132 | 9/ 4/88 | 5442 | 16529 | 143 | 12 | 0.50 | 1.47 | 81 | 8.5 | 3.8 |
| 133 | 9/ 4/88 | 5442 | 16550 | 170 | 14 | 0.50 | 1.30 | 81 | 8.7 | 3.7 |

Table B- 3.-- Station data Mller Freenan Continued.

| |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Table B-3.--Station data Mller Freenan Continued.

| Haul | Date | Latitude
 Deg Min | Longitude Deg Min | Depth
 (M) | Time | $\begin{aligned} & \text { Duration } \\ & (\mathrm{Hr}) \end{aligned}$ | $\begin{aligned} & \text { Distance } \\ & (\mathrm{nmi}) \end{aligned}$ | Strata | Surf. Temp. (${ }^{\circ} \mathrm{C}$) | Gear
 Temp.
 (${ }^{\circ} \mathrm{C}$) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 180 | 9/12/88 | 5659 | 17325 | 142 | 23 | 0.50 | 1.53 | 82 | 8.8 | 3.4 |
| 181 | 9/13/88 | 571 | 17335 | 363 | 2 | 0.50 | 11.39 | 82 | 8.8 | 4.0 |
| 182 | 9/13/88 | 5716 | 17359 | 369 | 6 | 0.50 | 1.20 | 84 | 8.3 | 3.7 |
| 183 | 9/13/88 | 5728 | 17357 | 105 | 9 | 0.50 | 1.68 | 82 | 8.2 | 3.8 |
| 184 | 9/13/88 | 5746 | 1748 | 102 | 12 | 0.50 | 1.47 | 82 | 8.4 | 3.6 |
| 185 | 9/13/88 | 5752 | 17357 | 276 | 15 | 0.50 | 1.18 | 84 | 8.7 | 3.7 |
| 187 | 9/14/88 | 5818 | 17418 | 141 | 4 | 0.50 | 1.61 | 82 | 8.6 | 3.7 |
| 188 | 9/14/88 | 5836 | 17444 | 305 | 9 | 0.50 | 1.31 | 84 | 8.5 | 3.7 |
| 189 | 9/14/88 | 5835 | 1751 | 399 | 12 | 0.50 | 1.37 | 84 | 8.5 | -9.0 |
| 190 | 9/14/88 | 5816 | 17523 | 392 | 16 | 0.50 | 1.55 | 84 | 8.6 | 3.7 |
| 191 | 9/14/88 | 5820 | 17533 | 427 | 19 | 0.50 | 1.36 | 84 | 8.3 | -9.0 |
| 193 | 9/15/88 | 5829 | 17544 | 210 | 2 | 0.50 | 1.65 | 82 | 8.6 | 3.8 |
| 194 | 9/15/88 | 5834 | 1765 | 148 | 4 | 0.50 | 1.57 | 82 | 8.4 | 3.3 |
| 195 | 9/15/88 | 5835 | 17620 | 200 | 7 | 0.50 | 1.58 | 82 | 8.3 | 3.7 |
| 196 | 9/15/88 | 5833 | 17613 | 404 | 10 | 0.50 | 1.25 | 84 | 8.4 | -9.0 |
| 197 | 9/15/88 | 5834 | 17638 | 349 | 13 | 0.50 | 1.34 | 84 | 8.3 | 3.7 |
| 198 | 9/15/88 | 5836 | 17717 | 431 | 17 | 0.43 | 1.30 | 84 | 8.5 | 3.7 |
| 199 | 9/15/88 | 5840 | 17752 | 418 | 20 | 0.50 | 1.24 | 84 | 8.6 | 3.6 |
| 200 | 9/15/88 | 5847 | 17759 | 309 | 24 | 0.50 | 1.62 | 84 | 8.4 | -9.0 |
| 201 | 9/16/88 | 5857 | 1788 | 137 | 6 | 0.50 | 1.52 | 82 | 8.1 | 3.5 |
| 202 | 9/16/88 | 596 | 17824 | 164 | 10 | 0.50 | 1.53 | 82 | 8.0 | 3.2 |
| 203 | 9/16/88 | 5916 | 17829 | 423 | 15 | 0.50 | 1.37 | 84 | 8.0 | 3.5 |
| 204 | 9/16/88 | 5925 | 17827 | 413 | 19 | 0.50 | 1.57 | 84 | 8.3 | 3.5 |
| 205 | 9/16/88 | 5925 | 17815 | 322 | 22 | 0.50 | 1.44 | 82 | 8.6 | 3.5 |
| 206 | 9/17/88 | 5913 | 17742 | 133 | 1 | 0.50 | 1.39 | 82 | 8.1 | 2.8 |
| 207 | 9/17/88 | 5919 | 17732 | 116 | 5 | 0.50 | 1.52 | 82 | 8.0 | 2.0 |
| 208 | 9/17/88 | 5924 | 17741 | 193 | 7 | 0.50 | 1.64 | 82 | 7.9 | 3.5 |
| 209 | 9/17/88 | 5932 | 17824 | 224 | 12 | 0.50 | 1.43 | 82 | 7.7 | 3.6 |
| 210 | 9/17/88 | 5942 | 17831 | 225 | 15 | 0.50 | 1.43 | 82 | 7.6 | 3.7 |
| 211 | 9/17/88 | 5946 | 17838 | 132 | 18 | 0.50 | 1.55 | 82 | 7.6 | 3.2 |
| 212 | 9/17/88 | 5949 | 17846 | 441 | 22 | 0.50 | 1.37 | 84 | 7.7 | 3.7 |
| 213 | 9/18/88 | 5947 | 17842 | 162 | 1 | 0.50 | 1.60 | 82 | 7.7 | 3.4 |
| 214 | 9/18/88 | 5955 | 17852 | 143 | 4 | 0.50 | 1.57 | 82 | 7.3 | 3.1 |
| 215 | 9/18/88 | 5959 | 17859 | 364 | 7 | 0.50 | 1.33 | 82 | 7.6 | 3.7 |
| 216 | 9/20/88 | 5627 | 17125 | 147 | 12 | 0.50 | 1.49 | 82 | 8.1 | 3.8 |
| 217 | 9/20/88 | 567 | 17036 | 279 | 18 | 0.50 | 1.44 | 83 | 8.1 | 3.7 |
| 218 | 9/20/88 | 5559 | 17011 | 262 | 23 | 0.50 | 1.32 | 81 | 8.1 | 3.6 |
| 219 | 9/21/88 | 5560 | 16934 | 396 | 3 | 0.50 | 1.35 | 83 | 8.2 | 3.6 |
| 220 | 9/21/88 | 562 | 16924 | 384 | 7 | 0.50 | 1.09 | 81 | 8.1 | 3.6 |
| 222 | 9/21/88 | 569 | 16855 | 287 | 14 | 0.50 | 1.44 | 81 | 8.5 | 3.6 |
| 223 | 9/21/88 | 5533 | 16830 | 200 | 18 | 0.50 | 1.57 | 81 | 8.1 | 3.7 |
| 224 | 9/21/88 | 5520 | 1687 | 347 | 22 | 0.50 | 1.48 | 83 | 7.7 | 3.6 |
| 225 | 9/22/88 | 5459 | 16745 | 324 | 2 | 0.50 | 1.43 | 83 | 7.8 | 3.4 |
| 226 | 9/22/88 | 5448 | 16718 | 251 | 6 | 0.50 | 1.48 | 81 | 7.4 | 3.7 |
| 227 | 9/22/88 | 5438 | 16725 | 318 | 9 | 0.50 | 1.46 | 83 | 7.8 | 3.6 |
| 228 | 9/22/88 | 5427 | 16718 | 373 | 12 | 0.50 | 1.29 | 83 | 7.4 | 3.8 |

Table B-3.--Station data Mller Freenan Continued.

| Haul | Date | Latitude Deg Min | Longitude Deg Min | Depth
 (M) | Time | Duration (Hr) | $\begin{gathered} \text { Distance } \\ (n m i) \end{gathered}$ | Strata | Surf. Temp. ($\left.{ }^{\circ} \mathrm{C}\right)$ | Gear Temp. (${ }^{\circ} \mathrm{C}$) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 229 | 9/22/88 | 5426 | 16648 | 323 | 16 | 0.50 | 1.24 | 83 | 6.9 | 4.0 |
| 230 | 9/22/88 | 5423 | 16630 | 348 | 19 | 0.50 | 1.41 | 83 | 7.0 | 3.6 |

A val ue of -9.0 indi cates no temperat ure was taken.

Table B-4.--Station data for the chartered vessel Tom Maru No. 51 during the 1988 bottom traw survey.

| 1 | $9 / 5 / 88$ | 54 | 30 | 166 | 12 | 271 | 11 | 0.50 | 1.79 | 81 | 8.0 | -9.0 |
| ---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2 | $9 / 5 / 88$ | 54 | 41 | 166 | 5 | 172 | 14 | 0.50 | 2.09 | 81 | 7.5 | -9.0 |
| 3 | $9 / 6 / 88$ | 54 | 33 | 166 | 38 | 241 | 9 | 0.50 | 1.59 | 81 | 7.4 | -9.0 |
| 4 | $9 / 6 / 88$ | 54 | 38 | 166 | 35 | 203 | 12 | 0.50 | 1.73 | 81 | 7.8 | -9.0 |
| 5 | $9 / 6 / 88$ | 54 | 41 | 166 | 53 | 201 | 17 | 0.50 | 1.74 | 81 | 7.8 | -9.0 |
| 6 | $9 / 6 / 88$ | 54 | 36 | 167 | 7 | 247 | 19 | 0.50 | 1.67 | 81 | 7.8 | -9.0 |
| 7 | $9 / 7 / 88$ | 54 | 55 | 167 | 14 | 161 | 9 | 0.50 | 2.11 | 81 | 7.4 | -9.0 |
| 8 | $9 / 7 / 88$ | 54 | 44 | 167 | 22 | 275 | 12 | 0.50 | 1.64 | 83 | 8.6 | -9.0 |
| 9 | $9 / 7 / 88$ | 54 | 31 | 167 | 37 | 416 | 16 | 0.50 | 1.81 | 83 | 8.5 | -9.0 |
| 10 | $9 / 7 / 88$ | 54 | 37 | 167 | 36 | 383 | 19 | 0.50 | 1.75 | 83 | 8.8 | -9.0 |
| 11 | $9 / 8 / 88$ | 55 | 17 | 167 | 58 | 224 | 9 | 0.50 | 2.00 | 81 | 9.0 | -9.0 |
| 12 | $9 / 8 / 88$ | 55 | 26 | 168 | 15 | 198 | 11 | 0.50 | 1.78 | 81 | 9.1 | -9.0 |
| 13 | $9 / 8 / 88$ | 55 | 37 | 168 | 45 | 296 | 15 | 0.50 | 1.25 | 83 | 8.6 | -9.0 |
| 14 | $9 / 8 / 88$ | 55 | 57 | 168 | 56 | 215 | 18 | 0.50 | 1.61 | 81 | 9.0 | -9.0 |
| 15 | $9 / 11 / 88$ | 56 | 8 | 169 | 28 | 162 | 11 | 0.50 | 1.68 | 81 | 7.9 | -9.0 |
| 16 | $9 / 11 / 88$ | 55 | 59 | 16944 | 484 | 15 | 0.50 | 0.54 | 83 | 7.6 | -9.0 | |
| 17 | $9 / 11 / 88$ | 56 | 1 | 170 | 14 | 190 | 19 | 0.50 | 1.68 | 81 | 8.0 | -9.0 |
| 18 | $9 / 11 / 88$ | 56 | 2 | 170 | 20 | 249 | 21 | 0.50 | 1.70 | 81 | 8.0 | -9.0 |
| 19 | $9 / 12 / 88$ | 56 | 33 | 172 | 30 | 389 | 12 | 0.50 | 1.45 | 84 | 8.0 | -9.0 |
| 20 | $9 / 12 / 88$ | 56 | 30 | 172 | 47 | 323 | 15 | 0.50 | 0.97 | 84 | 8.5 | -9.0 |
| 21 | $9 / 12 / 88$ | 56 | 39 | 173 | 6 | 124 | 19 | 0.50 | 1.71 | 82 | 8.5 | -9.0 |
| 22 | $9 / 13 / 88$ | 57 | 28 | 173 | 57 | 142 | 9 | 0.50 | 1.60 | 82 | 7.6 | -9.0 |
| 23 | $9 / 13 / 88$ | 5746 | 174 | 9 | 67 | 12 | 0.50 | 1.86 | -96 | 8.1 | -9.0 | |
| 24 | $9 / 13 / 88$ | 57 | 52 | 173 | 56 | 328 | 15 | 0.50 | 1.76 | 84 | 8.3 | -9.0 |
| 25 | $9 / 13 / 88$ | 58 | 5 | 174 | 8 | 227 | 17 | 0.50 | 2.02 | 82 | 8.1 | -9.0 |
| 26 | $9 / 13 / 88$ | 58 | 16 | 174 | 17 | 148 | 20 | 0.50 | 1.63 | 82 | 8.4 | -9.0 |
| 27 | $9 / 14 / 88$ | 58 | 37 | 174 | 45 | 253 | 11 | 0.50 | 1.26 | 82 | 8.1 | -9.0 |
| 28 | $9 / 14 / 88$ | 58 | 36 | 174 | 60 | 333 | 12 | 0.50 | 1.69 | 84 | 8.1 | -9.0 |
| 29 | $9 / 14 / 88$ | 58 | 16 | 175 | 23 | 358 | 16 | 0.50 | 1.68 | 84 | 8.0 | -9.0 |
| 30 | $9 / 14 / 88$ | 58 | 22 | 175 | 34 | 366 | 19 | 0.50 | 1.52 | 84 | 8.1 | -9.0 |
| 31 | $9 / 15 / 88$ | 58 | 33 | 176 | 12 | 321 | 10 | 0.50 | 1.76 | 84 | 8.1 | -9.0 |
| 32 | $9 / 15 / 88$ | 5834 | 176 | 40 | 291 | 13 | 0.50 | 1.63 | 84 | 7.8 | -9.0 | |
| 33 | $9 / 15 / 88$ | 58 | 37 | 177 | 18 | 285 | 17 | 0.50 | 1.29 | 84 | 8.2 | -9.0 |
| 34 | $9 / 15 / 88$ | 58 | 40 | 177 | 52 | 390 | 20 | 0.50 | 1.67 | 84 | 8.3 | -9.0 |
| | | | | | | | | | | | | |

[^17]Table B-5.--Station data for the chartered vessel Pel agos during the 1988 miduater survey while fishing the Northern Gol d 1200 rope traw.

| Haul | Date | Latitude Deg Min | Longitude Deg Min | Depth
 (m) | Time | Duration (hr) | $\begin{gathered} \text { Distance } \\ (\mathrm{nm}) \end{gathered}$ | Strata | Surf. Temp. (${ }^{\circ} \mathrm{C}$) | $\begin{aligned} & \text { Gear } \\ & \text { Temp. } \end{aligned}$ $\left({ }^{\circ} \mathrm{C}\right)^{B}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 6/23/88 | $55 \quad 6$ | 16445 | 30 | 20 | 1.33 | 3.89 | 5 | 6.8 | 5.3 |
| 4 | 6/26/88 | 5457 | 1662 | 65 | 11 | 0.82 | 2.11 | 5 | 7.0 | -9.0 |
| 5 | 6/27/88 | 5552 | 16548 | 55 | 24 | 0.50 | 1.57 | 5 | 7.4 | 4.2 |
| 7 | 6/29/88 | 5611 | 1679 | 65 | 22 | 0.28 | 0.93 | 5 | 7.3 | -9.0 |
| 8 | 6/30/88 | 5612 | 1677 | 61 | 5 | 0.08 | 0.26 | 5 | 7.3 | -9.0 |
| 9 | 6/30/88 | 5555 | 16850 | 90 | 17 | 0.40 | 0.99 | -9 | 7.5 | 3.7 |
| 10 | 7/1/88 | 5633 | 16820 | 52 | 23 | 0.05 | 0.18 | 5 | 7.8 | 3.5 |
| 11 | 7/ 2/88 | 5641 | 1681 | 40 | 16 | 0.18 | 0.77 | 5 | 7.6 | 2.8 |
| 14 | 7/ 4/88 | 5744 | 16722 | 25 | 18 | 0.18 | 0.49 | -9 | 6.9 | 0.7 |
| 16 | 7/ 5/88 | 5640 | 17122 | 63 | 16 | 0.58 | 1.77 | 6 | 7.3 | 3.9 |
| 17 | 7/ 6/88 | 571 | 17135 | 56 | 15 | 0.08 | 0.25 | 6 | 7.8 | 3.6 |
| 18 | 7/ 6/88 | 571 | 17135 | 25 | 16 | 0.53 | 1.94 | -9 | 7.8 | 4.8 |
| 19 | 7/7/88 | 5715 | 17160 | 57 | 23 | 0.07 | 0.20 | 6 | 7.5 | 3.4 |
| 20 | 7/8/88 | 5715 | 1733 | 61 | 13 | 0.93 | 2.90 | 6 | 7.8 | 3.2 |
| 21 | 7/8/88 | 5747 | 17132 | 51 | 22 | 0.12 | 0.50 | 4 | 8.3 | 1.9 |
| 23 | 7/10/88 | 585 | 17311 | 57 | 9 | 1.00 | 3.53 | 6 | 8.2 | 2.3 |
| 25 | 7/11/88 | 5834 | 17257 | 57 | 7 | 0.17 | 0.59 | 6 | 8.0 | 1.8 |
| 26 | 7/20/88 | 594 | 17343 | 61 | 10 | 0.12 | 0.32 | 6 | 7.5 | -9.0 |
| 28 | 7/21/88 | 5917 | 17418 | 59 | 9 | 0.08 | 0.14 | 6 | 7.8 | -9.0 |
| 29 | 7/21/88 | 5851 | 17530 | 61 | 16 | 0.72 | 2.83 | 6 | 8.4 | -9.0 |
| 30 | 7/23/88 | 5930 | 1762 | 65 | 9 | 0.05 | 0.08 | 6 | 8.4 | -9.0 |
| 32 | 7/26/88 | 6014 | 17618 | 65 | 8 | 0.13 | 0.43 | 6 | 7.5 | -9.0 |
| 33 | 7/27/88 | 6039 | 17618 | 54 | 8 | 0.37 | 1.27 | 6 | 7.1 | -9.0 |
| 34 | 7/27/88 | 6044 | 17717 | 64 | 21 | 0.03 | 0.10 | 6 | 7.5 | -9.0 |
| 35 | 7/28/88 | 611 | 17738 | 68 | 15 | 0.18 | 0.75 | 8 | 8.4 | -9.0 |

${ }^{\text {a }}$ Haul s with a stratum of -9 were not used in the anal ysis due to bad performance, bei ng outsi de the standard area, or part of another experiment.
${ }^{\mathrm{b}} \mathrm{A}$ val ue of -9.0 indi cates no temperat ure taken.

Table B-6.---Station data for the chartered vessel Pel agos during the 1988 miduater survey while fishing the Mari novich traw.

| Haul | Date | Latitude Deg Min | Longitude Deg Min | Depth (m) | Time | Duration (hr) | $\begin{gathered} \text { Distance } \\ (\mathrm{nm}) \end{gathered}$ | Strata | Surf. Temp. (${ }^{\circ}$) | Gear Temp. $\left({ }^{\circ} \mathrm{C}\right)^{b}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | 6/25/88 | 567 | 1638 | 11 | 16 | 0.42 | 2.35 | 3 | 7.6 | 7.1 |
| 3 | 6/25/88 | 566 | 1636 | 22 | 19 | 0.58 | 1.88 | 3 | 7.6 | 2.8 |
| 6 | 6/29/88 | 5657 | 1656 | 23 | 11 | 0.42 | 0.93 | 3 | 7.1 | 1.3 |
| 12 | 7/ 2/88 | 5642 | 1683 | 37 | 17 | 0.27 | 0.91 | 5 | 7.6 | 2.6 |
| 13 | 7/ $2 / 88$ | 5641 | 1681 | 20 | 18 | 0.50 | 1.79 | 5 | 7.6 | 4.1 |
| 15 | 7/ 4/88 | 5743 | 16725 | 18 | 19 | 0.32 | 1.25 | 3 | 6.9 | 0.9 |
| 22 | 7/8/88 | 5747 | 17133 | 35 | 23 | 0.37 | 1.30 | 4 | 8.3 | 2.3 |
| 24 | 7/10/88 | 5855 | 17051 | 15 | 20 | 0.57 | 2.04 | -9 | 7.3 | 2.6 |
| 27 | 7/20/88 | 595 | 17339 | 12 | 11 | 0.30 | 0.66 | 6 | 7.5 | -9.0 |
| 31 | 7/23/88 | 5929 | 1763 | 5 | 10 | 0.42 | 1.10 | -9 | 8.4 | -9.0 |

${ }^{\text {a }}$ Hauls with a strat um of -9 were not used in the anal ysi s due to bad performance, bei ng outsi de the standard area, or part of another experiment.
${ }^{\mathrm{b}} \mathrm{A}$ val ue of -9 indi cates no temperature taken.

APPENDIX C
 Rank Order of Relative Abundance for Fish and Invertebrate Species

Appendix C contains listings of all fish and invertebrate species caught during the 1988 U.S. -Japan bottom trawl survey in the eastern Bering Sea ranked in order of relative abundance. Invertebrates other than squids, octopuses, and shrimps were not identified during the Japanese survey of continental slope waters. The rank order lists are based on at-sea identifications, and the species groupings shown in Table 6 were not used in producing the lists.

> List of Tables

Table
Page

C-l Rank order of fish and invertebrate taxa by relative
abundance (kg/ha) from the 1988 U.S. bottom trawl survey
on the continental shelf.. 198

C-2 Rank order of fish and invertebrate taxa by relative
abundance (kg/ha) from the 1988 U.S.-Japan bottom trawl
survey on the continental slope. 205

C-3 Rank order of fish and invertebrate taxa by relative
abundance (kg/ha) from the 1988 U.S. bottom trawl survey
of the continental shelf and the 1988 U.S.-Japan bottom
trawl survey of the continental slope combined 209

Table C-I.-- Rank order of fish and invertebrate taxa by rel ative abundance ($\mathbf{k g} / \mathrm{ha}$) from the $1988 \mathrm{u} . \mathrm{s}$. bottom traw survey on the continental shel f.

| RANK | SPECIES | MEAN CPUE (KG/HA) | VARIANCE | 90 PERCENTCONFIDENCE LIMITS | | PROPORTION | CUMULATIVE PROPORTION | NAME |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 21740 | 119.37578 | 139.356 | 99.80462 | 138.94695 | 0.34716295 | 0.34716295 | WALLEYE POLLOCK |
| 2 | 10210 | 49.64700 | 15.037 | 43.21819 | 56.07581 | 0.14438104 | 0.49154399 | YELLOWFIN SOLE |
| 3 | 10260 | 30.97046 | 4.091 | 27.61705 | 34.32387 | 0.09006682 | 0.58161081 | ROCK SOLE |
| 4 | 68580 | 18.14637 | 1.725 | 15.96881 | 20.32392 | 0.05277240 | 0.63438321 | NARROH SNOW CRAB(=IANNER CRAB(OPILIO)) |
| 5 | 10285 | 17.15580 | 6.871 | 12.81013 | 21.50147 | 0.04989168 | 0.68427489 | ALASKA PLAICE |
| 6 | 21720 | 16.77458 | 1.607 | 14.67269 | 18.87656 | 0.04878304 | 0.73305793 | PACIFIC COD |
| 7 | 81742 | 13.39586 | 1.597 | 11.30093 | 15.49079 | 0.03895721 | 0.77201514 | PURPLE-ORANGE SEASTAR |
| 8 | 10130 | 8.79387 | 0.589 | 7.52098 | 10.06677 | 0.02557392 | 0.79758906 | flathead sole |
| 9 | 10110 | 4.73741 | 0.300 | 3.82948 | 5.64534 | 0.01377711 | 0.81136617 | ARROWTOOTH FLOUNDER |
| 10 | 69086 | 4.15198 | 0.248 | 3.32614 | 4.97782 | 0.01207459 | 0.82344077 | FUZZY HERMIT CRAB |
| 11 | 98082 | 3.95581 | 0.639 | 2.63044 | 5.28118 | 0.01150410 | 0.83494486 | SEA POTATO |
| 12 | 00400 | 3.42911 | 0.175 | 2.73650 | 4.12172 | 0.00997237 | 0.84491724 | SKATE UNIDENT. |
| 13 | 99994 | 3.33287 | 0.134 | 2.72640 | 3.93934 | 0.00969248 | 0.85460972 | EMPIY GASTROPOD SHELLS |
| 14 | 71884 | 2.90835 | 0.126 | 2.32043 | 3.49627 | 0.00845792 | 0.86306764 . | NEPTUNEA HEROS |
| 15 | 21110 | 2.66811 | 5.488 | 0.00000 | 6.55208 | 0.00775927 | 0.87082691 | PACIFIC HERRING |
| 16 | 10120 | 2.28339 | 0.041 | 1.94806 | 2.61872 | 0.00664046 | 0.87746737 | PACIFIC HALIBUT |
| 17 | 00404 | 2.06944 | 0.382 | 1.04500 | 3.09388 | 0.00601826 | 0.88348561 | RAJA SP. |
| 18 | 68560 | 1.91743 | 0.114 | 1.35856 | 2.47630 | 0.00557618 | 0.88906179 | BROAD SNOW CRAB (=TANNER CRAB(BAIRDI)) |
| 19 | 00471 | 1.79631 | 0.126 | 1.20798 | 2.38465 | 0.00522395 | 0.89428574 | ALASKA SKATE (=FLATHEAD SKATE) |
| 20 | 83020 | 1.51156 | 0.116 | 0.94736 | 2.07575 | 0.00439584 | 0.89868158 | GORGONOCEPHALUS CARYI |
| 21 | 21348 | 1.50321 | 0.332 | 0.54853 | 2.45789 | 0.00437157 | 0.90305315 | BUTTERFLY SCULPIN |
| 22 | 71882 | 1.25433 | 0.039 | 0.92659 | 1.58207 | 0.00364778 | 0.90670093 | FAT WHELK |
| 23 | 91050 | 1.20117 | 1.443 | 0.00000 | 3.19258 | 0.00349319 | 0.91019412 | BARREL SPONGE |
| 24 | 21371 | 1.13227 | 0.024 | 0.87299 | 1.39156 | 0.00329282 | 0.91348694 | PLAIN SCULPIN |
| 25 | 71820 | 1.11403 | 0.027 | 0.83916 | 1.38889 | 0.00323976 | 0.91672671 | PRIBILOF UHELK |
| 26 | 81780 | 1.07433 | 0.109 | 0.52632 | 1.62235 | 0.00312433 | 0.91985103 | |
| 27 | 10140 | 1.04298 | 0.017 | 0.82680 | 1.25915 | 0.00303314 | 0.92288417 | BERING FLOUNDER |
| 28 | 83010 | 1.00270 | 0.090 | 0.50664 | 1.49875 | 0.00291599 | 0.92580016 | BASKETSTARFISH UNIDENT. |
| 29 | 91000 | 0.90976 | 0.137 | 0.29552 | 1.52399 | 0.00264571 | 0.92844587 | SPONGE UNIDENT. |
| 30 | 80590 | 0.90616 | 0.015 | 0.70549 | 1.10682 | 0.00263524 | 0.93108111 | LEPTASTERIAS POLARIS |
| 31 | 69322 | 0.89146 | 0.035 | 0.57960 | 1.20331 | 0.00259249 | 0.93367360 | RED KING CRAB |
| 32 33 | 43000 | 0.85694 | 0.029 | 0.57470 | 1.13919 | 0.00249212 | 0.93616572 | SEA ANEMONE UNIDENT. |
| 33 34 | 24184 98205 | 0.82532 0.78474 | 0.018 | 0.60084 | 1.04980 | 0.00240015 | 0.93856587 | MARBLED EELPOUT (PREV. SPARSE TOOTHED LYCOD) |
| 34 | 98205 | 0.78474 | 0.058 | 0.38587 | 1.18362 | 0.00228215 | 0.94084802 | SEA PEACH |
| 35 | 69060 | 0.74156 | 0.015 | 0.54075 | 0.94237 | 0.00215656 | 0.94300458 | aleutian hermit |
| 36 | 71870 | 0.71515 | 0.016 | 0.50351 | 0.92680 | 0.00207977 | 0.94508436 | LYRE WHELK |
| 37 | 21375 | 0.70275 | 0.020 | 0.46971 | 0.93579 | 0.00204371 | 0.94712806 | MYOXOCEPHALUS SP. |
| 38 | 21725 | 0.68394 | 0.128 | 0.09168 | 1.27620 | 0.00198901 | 0.94911707 | ARCTIC COD |
| 39 | 21735 | 0.66893 | 0.061 | 0.25832 | 1.07954 | 0.00194536 | 0.95106243 | SAFFRON COD |
| 40 | 21370 | 0.65715 | 0.007 | 0.52070 | 0.79361 | 0.00191110 | 0.95297353 | GREAT SCULPIN |
| 41 | 69120 | 0.64945 | 0.016 | 0.43929 | 0.85960 | 0.00188869 | 0.95486222 | HAIRY HERMIT CRAB |
| 42 | 69095 | 0.64402 | 0.008 | 0.49929 | 0.78875 | 0.00187291 | 0.95673514 | LONGFINGER HERMIT |
| 43 | 43020 | 0.64021 | 0.098 | 0.12090 | 1.15952 | 0.00186184 | 0.95859698 | METRIDIUM SENILE |
| 44 | 99993 | 0.58872 | 0.019 | 0.35933 | 0.81810 | 0.00171208 | 0.96030906 | EmPTY BIVALVE SHELLS |
| 45 | 69010 | 0.53714 | 0.055 | 0.14701 | 0.92726 | 0.00156208 | 0.96187113 | HERMIT CRAB UNIDENT. |
| 46 | 24185 | 0.51153 | 0.005 | 0.39213 | 0.63093 | 0.00148762 | 0.96335875 | HATTLED EELPOUT |
| 47 | 69090 | 0.49558 | 0.004 | 0.39058 | 0.60058 | 0.00144122 | 0.96479997 | PAGURUS OCHOTENSIS |

Table C-I.--(Cont.).

| RANK | SPECIES | $\begin{gathered} \text { MEAN CPUE } \\ \text { (KG/HA) } \end{gathered}$ | VARIANCE | CONFIDE | NT
 LIMITS | PROPORTION | CUMULATIVE | NAME | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 48 | 83320 | 0.47527 | 0.021 | 0.23694 | 0.71361 | 0.00138216 | 0.96618213 | OPHIURA SARSI | |
| 49 | 40500 | 0.42841 | 0.005 | 0.30552 | 0.55130 | 0.00124588 | 0.96742800 | JELLYFISH UNIDENT. | |
| 50 | 20040 | 0.41241 | 0.002 | 0.33816 | 0.48665 | 0.00119934 | 0.96862734 | STURGEON POACHER | |
| 51 | 21347 | 0.40153 | 0.016 | 0.19269 | 0.61038 | 0.00116772 | 0.96979506 | YELLOW IRISH LORD | |
| 52 | 68577 | 0.39678 | 0.005 | 0.27576 | 0.51780 | 0.00115389 | 0.97094895 | CIRCUMBOREAL IOAD CRAB (=hYAS CRAB) | |
| 53 | 10211 | 0.39610 | 0.004 | 0.28579 | 0.50642 | 0.00115193 | 0.97210088 | LONGHEAD DAB | |
| 54 | 21420 | 0.35061 | 0.008 | 0.20527 | 0.49595 | 0.00101962 | 0.97312050 | BIGMOUTH SCULPIN | |
| 55 | 69070 | 0.32111 | 0.003 | 0.23732 | 0.40490 | 0.00093385 | 0.97405435 | KNOBBYHAND HERMIT CRAB | |
| 56 | 83000 | 0.29142 | 0.019 | 0.06528 | 0.51755 | 0.00084748 | 0.97490184 | BRITTLESTARFISH UNIDENT. | |
| 57 | 72500 | 0.26778 | 0.002 | 0.18990 | 0.34566 | 0.00077874 | 0.97568058 | OREGON TRITON | |
| 58 | 72752 | 0.26297 | 0.003 | 0.17851 | 0.34743 | 0.00076476 | 0.97644533 | LADDER WHELK (PREV. SILKY WHELK) | |
| 59 | 80020 | 0.25770 | 0.016 | 0.04803 | 0.46736 | 0.00074942 | 0.97719475 | EVASTERIAS ECHINOSOMA | |
| 60 | 71001 | 0.25151 | 0.002 | 0.18016 | 0.32286 | 0.00073144 | 0.97792619 | SNAIL (GASTROPOD) EGGS | |
| 61 | 10200 | 0.24779 | 0.001 | 0.18831 | 0.30728 | 0.00072062 | 0.97864681 | REX SOLE | |
| 62 | 10115 | 0.23979 | 0.003 | 0.15526 | 0.32431 | 0.00069733 | 0.97934414 | GREENLAND TURBOT (=GREENLAND HALIBUT) | |
| 63 | 41201 | 0.23497 | 0.008 | 0.09051 | 0.37943 | 0.00068333 | 0.98002747 | SEA RASPBERRY | |
| 64 | 98310 | 0.23346 | 0.004 | 0.13118 | 0.33573 | 0.00067892 | 0.98070640 | APLIDIUM SP. | |
| 65 | 80200 | 0.22231 | 0.002 | 0.15412 | 0.29050 | 0.00064651 | 0.98135291 | LETHASTERIAS NANIMENSIS | |
| 66 | 10112 | 0.22008 | 0.002 | 0.13821 | 0.30195 | 0.00064003 | 0.98199294 | KAMCHATKA FLOUNDER | |
| 67 | 85201 | 0.21839 | 0.020 | 0.00000 | 0.45244 | 0.00063512 | 0.98262806 | CUCUMARIA FALLAX | |
| 68 | 98105 | 0.20275 | 0.005 | 0.08515 | 0.32034 | 0.00058962 | 0.98321768 | boltenia ovifera | |
| 69 | 10220 | 0.19726 | 0.002 | 0.11728 | 0.27724 | 0.00057367 | 0.98379135 | STARRY FLOUNDER | $1-$ |
| 70 | 20720 | 0.18606 | 0.010 | 0.02210 | 0.35002 | 0.00054109 | 0.98433244 | SEARCHER | 6 |
| 71 | 71753 | 0.18268 | 0.010 | 0.01708 | 0.34829 | 0.00053127 | 0.98486371 | WARPED WHELK | |
| 72 | 98100 | 0.17896 | 0.003 | 0.08492 | 0.27300 | 0.00052045 | 0.98538416 | SEA ONION UNIDENT. | |
| 73 | 68590 | 0.17806 | 0.002 | 0.10320 | 0.25292 | 0.00051783 | 0.98590199 | TANNER CRAB (HYBRID) | |
| 74 | 69061 | 0.17126 | 0.000 | 0.13470 | 0.20782 | 0.00049806 | 0.98640005 | LABIDOCHIRUS SPLENDESCENS (=PAGURUS SP.) | |
| 75 | 22200 | 0.15457 | 0.000 | 0.12289 | 0.18625 | 0.00044952 | 0.98684956 | SNAILFISH UNIDENT. | |
| 76 | 72743 | 0.15322 | 0.001 | 0.11429 | 0.19215 | 0.00044559 | 0.98729515 | BUCCINUM ANGULOSUM | |
| 77 | 72755 | 0.14353 | 0.000 | 0.10892 | 0.17813 | 0.00041739 | 0.98771255 | POLAR WHELK | |
| 78 | 71756 | 0.13751 | 0.003 | 0.05206 | 0.22296 | 0.00039991 | 0.98811245 | FRAGILE WHELK | |
| 79 | 72751 | 0.12522 | 0.001 | 0.07950 | 0.17095 | 0.00036417 | 0.98847662 | SINUOUS WHELK (PREV. LYRE WHELK) | |
| 80 | 24191 | 0.12175 | 0.001 | 0.08223 | 0.16128 | 0.00035407 | 0.98883070 | SHORTFIN EELPOUT | |
| 81 | 71835 | 0.12107 | 0.003 | 0.02744 | 0.21470 | 0.00035209 | 0.98918279 | NEPTUNEA BOREALIS | |
| 82 | 30420 | 0.11338 | 0.012 | 0.00000 | 0.29860 | 0.00032971 | 0.98951250 | NORTHERN ROCKFISH | |
| 83 | 00472 | 0.11005 | 0.005 | 0.00000 | 0.22924 | 0.00032005 | 0.98983255 | aleutian skate | |
| 84 | 00435 | 0.09988 | 0.002 | 0.03483 | 0.16493 | 0.00029047 | 0.99012302 | BERING SKATE (=SANDPAPER SKATE) | |
| 85 | 68578 | 0.09316 | 0.000 | 0.05768 | 0.12865 | 0.00027094 | 0.99039396 | NORTH PACIFIC TOAD CRAB (=hYAS CRAB) | |
| 86 | 78403 | 0.09242 | 0.002 | 0.02744 | 0.15740 | 0.00026877 | 0.99066273 | GIANT OCTOPUS | |
| 87 | 80594 | 0.09140 | 0.001 | 0.04248 | 0.14033 | 0.00026581 | 0.99092854 | LEPTASIERIAS ARCTICA. | |
| 88 | 23041 | 0.09128 | 0.000 | 0.06182 | 0.12075 | 0.00026547 | 0.99119401 | CAPELIN | |
| 89 | 82730 | 0.09006 | 0.002 | 0.01335 | 0.16677 | 0.00026192 | 0.99145593 | SAND DOLLAR UNIDENT. | |
| 90 | 69323 | 0.08948 | 0.000 | 0.06059 | 0.11838 | 0.00026023 | 0.99171616 | blue king crab | |
| 91 | 69520 | 0.07849 | 0.000 | 0.04323 | 0.11375 | 0.00022826 | 0.99194442 | HYAS SP. | |
| 92 | 78010 | 0.07804 | 0.001 | 0.03488 | 0.12119 | 0.00022694 | 0.99217136 | OCTOPUS UNIDENT. | |
| 93 | 69121 | 0.06777 | 0.000 | 0.03751 | 0.09802 | 0.00019708 | 0.99236844 | ELASSOCHIRUS CAVIMANUS | |
| 94 | 65201 | 0.06721 | 0.002 | 0.00000 | 0.14911 | 0.00019546 | 0.99256390 | BALANUS SP. | |

Table C-1.--(Cont.).

| RANK | SPECIES | MEAN CPUE (KG/HA) | VARIANCE | $\begin{array}{r} 90 \mathrm{~F} \\ \text { CONFIDE } \end{array}$ | $\begin{aligned} & \text { NT } \\ & \text { LIMITS } \end{aligned}$ | PROPORTION | CUMULATIVE PROPORTION | NAME | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 95 | 66000 | 0.06489 | 0.000 | 0.04238 | 0.08741 | 0.00018872 | 0.99275262 | SHRIMP UNIDENT. | |
| 96 | 21316 | 0.06283 | 0.001 | 0.01940 | 0.10626 | 0.00018272 | 0.99293534 | ARMORHEAD SCULPIN | |
| 97 | 72740 | 0.06230 | 0.000 | 0.02527 | 0.09933 | 0.00018118 | 0.99311652 | BUCCINUM SP. | |
| 98 | 00232 | 0.06172 | 0.004 | 0.00000 | 0.16404 | 0.00017948 | 0.99329601 | SALMON SHARK | |
| 99 | 21368 | 0.06148 | 0.000 | 0.03334 | 0.08961 | 0.00017878 | 0.99347479 | WARTY SCULPIN (=SHORTHORNED SCULPIN) | |
| 100 | 71750 | 0.06093 | 0.001 | 0.00000 | 0.12197 | 0.00017718 | 0.99365197 | VOLUTOPSIUS SP. (=PYRULOFUSUS SP.) | |
| 101 | 74562 | 0.05877 | 0.000 | 0.03011 | 0.08743 | 0.00017092 | 0.99382289 | DISCORDANT MUSSEL | |
| 102 | 98300 | 0.05635 | 0.000 | 0.02265 | 0.09005 | 0.00016387 | 0.99398675 | COMPOUND ASCIDIAN UNIDENT. | |
| 103 | 65203 | 0.05615 | 0.001 | 0.00000 | 0.11765 | 0.00016328 | 0.99415003 | GIANT BARNACLE | |
| 104 | 68781 | 0.05544 | 0.000 | 0.02935 | 0.08153 | 0.00016122 | 0.99431126 | telmessus crab | |
| 105 | 82740 | 0.05495 | 0.002 | 0.00000 | 0.13113 | 0.00015980 | 0.99447106 | Parma sand dollar | |
| 106 | 95000 | 0.05386 | 0.001 | 0.01372 | 0.09400 | 0.00015664 | 0.99462770 | BRYOZOAN UNIDENT. | |
| 107 | 82510 | 0.05286 | 0.000 | 0.02940 | 0.07633 | 0.00015374 | 0.99478143 | GREEN SEA URCHIN | |
| 108 | 66031 | 0.05120 | 0.000 | 0.03445 | 0.06795 | 0.00014891 | 0.99493034 | NORTHERN SHRIMP (=PINK SHRIMP) | |
| 109 | 71759 | 0.04548 | 0.001 | 0.00000 | 0.09228 | 0.00013226 | 0.99506260 | THREADED WHELK | |
| 110 | 43010 | 0.04486 | 0.000 | 0.00831 | 0.08140 | 0.00013045 | 0.99519305 | METRIDIUM SP. | |
| 111 | 71500 | 0.04460 | 0.000 | 0.02304 | 0.06617 | 0.00012971 | 0.99532276 | SNAIL UNIDENT. | |
| 112 | 22201 | 0.04206 | 0.000 | 0.02534 | 0.05879 | 0.00012232 | 0.99544508 | LIPARIS SP. | |
| 113 | 81355 | 0.04077 | 0.001 | 0.00312 | 0.07842 | 0.00011856 | 0.99556365 | PTERASTER OBSCURUS | |
| 114 | 71721 | 0.03984 | 0.001 | 0.00000 | 0.08320 | 0.00011586 | 0.99567950 | THIN-RIBBED WHELK | |
| 115 | 00420 | 0.03941 | 0.001 | 0.00000 | 0.08562 | 0.00011461 | 0.99579411 | BIG SKATE | |
| 116 | 21313 | 0.03912 | 0.000 | 0.02104 | 0.05719 | 0.00011375 | 0.99590786 | GYMNOCANTHUS SP. | \cdots |
| 117 | 71772 | 0.03856 | 0.000 | 0.02536 | 0.05177 | 0.00011214 | 0.99602000 | BERINGIUS BERINGII | \bigcirc |
| 118 | 68510 | 0.03840 | 0.000 | 0.00925 | 0.06755 | 0.00011167 | 0.99613167 | LONGHORNED DECORATOR CRAB (=DECORATOR CRAB) | \bigcirc |
| 119 | 23055 | 0.03795 | 0.000 | 0.01784 | 0.05805 | 0.00011035 | 0.99624202 | RAINBOW SMELT | |
| 120 | 71961 | 0.03791 | 0.000 | 0.02356 | 0.05226 | 0.00011025 | 0.99635228 | clinopegma magma | |
| 121 | 56311 | 0.03599 | 0.001 | 0.00000 | 0.08162 | 0.00010466 | 0.99645693 | GIANT SCALE HORM | |
| 122 | 10212 | 0.03598 | 0.000 | 0.01826 | 0.05370 | 0.00010464 | 0.99656157 | SAKHALIN SOLE | |
| 123 | 98000 | 0.03450 | 0.000 | 0.00764 | 0.06136 | 0.00010033 | 0.99666190 | TUNICATE UNIDENT. | |
| 124 | 41221 | 0.03404 | 0.000 | 0.00737 | 0.06070 | 0.00009898 | 0.99676088 | GERSEMIA RUBIFORMIS (=EUNEPHTHYA RUBIFORMIS) | |
| 125 | 10270 | 0.03359 | 0.000 | 0.00724 | 0.05994 | 0.00009768 | 0.99685857 | BUTTER SOLE | |
| 126 | 81779 | 0.03325 | 0.001 | 0.00000 | 0.08575 | 0.00009671 | 0.99695527 | CTENODISCUS SP. | |
| 127 | 50160 | 0.03313 | 0.000 | 0.01153 | 0.05474 | 0.00009635 | 0.99705162 | SEA MOUSE UNIDENT. | |
| 128 | 21438 | 0.03010 | 0.000 | 0.02031 | 0.03989 | 0.00008753 | 0.99713916 | THORNY SCULPIN | |
| 129 | 71764 | 0.02923 | 0.000 | 0.00804 | 0.05043 | 0.00008501 | 0.99722417 | TULIP WHELK | |
| 130 | 99999 | 0.02867 | 0.000 | 0.00488 | 0.05247 | 0.00008338 | 0.99730755 | UNSORTED SHAB | |
| 131 | 75610 | 0.02845 | 0.001 | 0.00000 | 0.06951 | 0.00008275 | 0.99739030 | FALSEJINGLES UNIDENT. (PREV. ROCK JINGLES) | |
| 132 | 23010 | 0.02715 | 0.000 | 0.00748 | 0.04682 | 0.00007896 | 0.99746926 | EULACHON | |
| 133 | 50000 | 0.02715 | 0.001 | 0.00000 | 0.06630 | 0.00007894 | 0.99754820 | POLYCHAETE WORM UNIDENT. | |
| 134 | 99990 | 0.02582 | 0.000 | 0.00000 | 0.06271 | 0.00007507 | 0.99762328 | INVERTEBRATE UNIDENT. | |
| 135 | 82526 | 0.02525 | 0.000 | 0.00000 | 0.06227 | 0.00007343 | 0.99769671 | WHITE SEA URCHIN | |
| 136 | 80110 | 0.02487 | 0.000 | 0.00559 | 0.04414 | 0.00007232 | 0.99776903 | LEPTASTERIAS GROENLANDICA | |
| 137 | 24001 | 0.02465 | 0.000 | 0.00000 | 0.05349 | 0.00007167 | 0.99784070 | PROWFISH | |
| 138 | 21360 | 0.02383 | 0.000 | 0.00000 | 0.05134 | 0.00006929 | 0.99790999 | BRIGHtbelly sculpin | |
| 139 | 69400 | 0.02297 | 0.000 | 0.01060 | 0.03533 | 0.00006680 | 0.99797679 | HORSEHAIR CRAB | |
| 140 | 71763 | 0.02235 | 0.000 | 0.00000 | 0.04492 | 0.00006500 | 0.99804179 | SHOULDERED WHELK | |
| 141 | 72063 | 0.02010 | 0.000 | 0.01121 | 0.02899 | 0.00005846 | 0.99810025 | KEELED AFORIA | |

Table C-I.--(Cont.).

| RANK | SPECIES | MEAN CPUE (KG/HA) | VARIANCE | $\begin{aligned} & 90 \text { PERCENT } \\ & \text { CONFIDENCE LIMITS } \end{aligned}$ | | PROPORTION | CUMULATIVE PROPORTION | NAME |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 142 | 71010 | 0.01990 | 0.000 | 0.01161 | 0.02819 | 0.00005788 | 0.99815813 | NUDIBRANCH UNIDENT. |
| 143 | 10250 | 0.01952 | 0.000 | 0.00000 | 0.05188 | 0.00005676 | 0.99821489 | SAND SOLE |
| 144 | 71891 | 0.01893 | 0.000 | 0.01325 | 0.02460 | 0.00005505 | 0.99826994 | PLICI FUSUS KROYERI |
| 145 | 71580 | 0.01890 | 0.000 | 0.01208 | 0.02571 | 0.00005496 | 0.99832490 | PALE MOONSNAIL |
| 146 | 71525 | 0.01774 | 0.000 | 0.00899 | 0.02649 | 0.00005159 | 0.99837649 | NATICA SP. |
| 147 | 75285 | 0.01688 | 0.000 | 0.00395 | 0.02981 | 0.00004909 | 0.99842557 | GREENLAND COCKLE |
| 148 | 65100 | 0.01669 | 0.000 | 0.00094 | 0.03244 | 0.00004853 | 0.99847411 | BARNACLE UNIDENT. |
| 149 | 85200 | 0.01582 | 0.000 | 0.00160 | 0.03005 | 0.00004602 | 0.99852012 | CUCUMARIA SP. |
| 150 | 21390 | 0.01543 | 0.000 | 0.00843 | 0.02242 | 0.00004486 | 0.99856498 | SPINYHEAD SCULPIN |
| 151 | 41100 | 0.01529 | 0.000 | 0.00506 | 0.02552 | 0.00004446 | 0.99860945 | SOFT CORAL UNIDENT. |
| 152 | 82500 | 0.01519 | 0.000 | 0.00000 | 0.03291 | 0.00004417 | 0.99865362 | SEA URCHIN UNIDENT. |
| 153 | 43040 | 0.01321 | 0.000 | 0.00670 | 0.01972 | 0.00003843 | 0.99869205 | TEALIA SP. |
| 154 | 24189 | 0.01260 | 0.000 | 0.00032 | 0.02488 | 0.00003664 | 0.99872868 | POLAR EELPOUT |
| 155 | 71760 | 0.01234 | 0.000 | 0.00000 | 0.02852 | 0.00003588 | 0.99876456 | VOLUTE HHELK |
| 156 | 20322 | 0.01228 | 0.000 | 0.00000 | 0.02589 | 0.00003572 | 0.99880028 | BERING WOLFFISH |
| 157 | 80000 | 0.01131 | 0.000 | 0.00112 | 0.02150 | 0.00003289 | 0.99883317 | STARFISH UNIDENT. |
| 158 | 00450 | 0.01119 | 0.000 | 0.00000 | 0.02975 | 0.00003256 | 0.99886573 | STARRY SKATE |
| 159 | 91040 | 0.01019 | 0.000 | 0.00000 | 0.02709 | 0.00002964 | 0.99889537 | TREE SPONGE |
| 160 | 21355 | 0.01017 | 0.000 | 0.00400 | 0.01634 | 0.00002958 | 0.99892495 | RIBBED SCULPIN |
| 161 | 75111 | 0.01002 | 0.000 | 0.00352 | 0.01652 | 0.00002913 | 0.99895408 | ARCTIC SURFCLAM (PREV. ALASKA SURF CLAM) |
| 162 | 21377 | 0.00999 | 0.000 | 0.00000 | 0.02225 | 0.00002905 | 0.99898313 | FOURHORN SCULPIN |
| 163 | 94000 | 0.00975 | 0.000 | 0.00149 | 0.01801 | 0.00002836 | 0.99901150 | SIPUNCULID WORM UNIDENT. |
| 164 | 81310 | 0.00902 | 0.000 | 0.00412 | 0.01392 | 0.00002624 | 0.99903774 | PTERASTER SP. |
| 165 | 21446 | 0.00897 | 0.000 | 0.00463 | 0.01330 | 0.00002608 | 0.99906382 | ICELUS SP. |
| 166 | 30060 | 0.00891 | 0.000 | 0.00000 | 0.02218 | 0.00002590 | 0.99908972 | PACIFIC OCEAN PERCH |
| 167 | 69110 | 0.00877 | 0.000 | 0.00060 | 0.01695 | 0.00002551 | 0.99911524 | HIDEHAND HERMIT CRAB |
| 168 | 71800 | 0.00833 | 0.000 | 0.00000 | 0.02155 | 0.00002423 | 0.99913947 | NEPTUNEA SP. |
| 169 | 42000 | 0.00780 | 0.000 | 0.00043 | 0.01517 | 0.00002269 | 0.99916216 | SEA PEN UNIDENT. |
| 170 | 20061 | 0.00768 | 0.000 | 0.00420 | 0.01115 | 0.00002232 | 0.99918448 | BERING POACHER |
| 171 | 21932 | 0.00730 | 0.000 | 0.00281 | 0.01178 | 0.00002122 | 0.99920570 | HHITESPOTTED GREENLING |
| 172 | 71769 | 0.00722 | 0.000 | 0.00000 | 0.01547 | 0.00002101 | 0.99922671 | BERINGIUS SP. |
| 173 | 74311 | 0.00676 | 0.000 | 0.00185 | 0.01168 | 0.00001966 | 0.99924637 | ARCTIC HIATELLA |
| 174 | 22219 | 0.00674 | 0.000 | 0.00000 | 0.01792 | 0.00001961 | 0.99926598 | CAREPROCTUS SP. |
| 175 | 71537 | 0.00665 | 0.000 | 0.00205 | 0.01125 | 0.00001934 | 0.99928531 | RUSTY MOONSNAIL |
| 176 | 81360 | 0.00639 | 0.000 | 0.00000 | 0.01280 | 0.00001859 | 0.99930390 | DIPLOPTERASTER MULTIPES |
| 177 | 69035 | 0.00637 | 0.000 | 0.00000 | 0.01694 | 0.00001853 | 0.99932243 | PAGURUS SP. |
| 178 | 21314 | 0.00617 | 0.000 | 0.00000 | 0.01258 | 0.00001794 | 0.99934038 | THREADED SCULPIN |
| 179 | 66611 | 0.00610 | 0.000 | 0.00402 | 0.00819 | 0.00001775 | 0.99935813 | NORTHERN ARGID |
| 180 | 66045 | 0.00600 | 0.000 | 0.00304 | 0.00896 | 0.00001744 | 0.99937557 | HUMPY SHRIMP |
| 181 | 85000 | 0.00597 | 0.000 | 0.00000 | 0.01244 | 0.00001736 | 0.99939293 | SEA CUCUMEER UNIDENT. |
| 182 | 72501 | 0.00565 | 0.000 | 0.00000 | 0.01368 | 0.00001642 | 0.99940935 | FUSITRITON SP. |
| 183 | 80015 | 0.00552 | 0.000 | 0.00000 | 0.01449 | 0.00001606 | 0.99942541 | EVASTERIAS TROSCHELII |
| 184 | 81095 | 0.00548 | 0.000 | 0.00216 | 0.00880 | 0.00001594 | 0.99944135 | ROSE SEA STAR |
| 185 | 75110 | 0.00533 | 0.000 | 0.00128 | 0.00939 | 0.00001551 | 0.99945686 | MACTROMERIS SP. (=SPISULA SP.) |
| 186 | 20510 | 0.00532 | 0.000 | 0.00000 | 0.01106 | 0.00001547 | 0.99947233 | SABLEFISH |
| 187 | 24186 | 0.00510 | 0.000 | 0.00000 | 0.01350 | 0.00001484 | 0.99948717 | SADDLED EELPOUT |
| 188 | 66530 | 0.00499 | 0.000 | 0.00323 | 0.00676 | 0.00001452 | 0.99950170 | RIDGED CRANGON |

Table C-I.--(Cont.).

| RANK | SPECIES | $\begin{aligned} & \text { MEAN CPUE } \\ & (K G / H A) \end{aligned}$ | VARIANCE | 90 PERCENTCONFIDENCE LIMITS | | PROPORTION | CLMLILATIVE PROPORTION | NAME |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 189 | 98200 | 0.00454 | 0.000 | 0.00000 | 0.01071 | 0.00001319 | 0.99951489 | SEA PEACH UNIDENT. |
| 190 | 68040 | 0.00436 | 0.000 | 0.00180 | 0.00692 | 0.00001268 | 0.99952756 | OREGON ROCK CRAB |
| 191 | 71681 | 0.00436 | 0.000 | 0.00060 | 0.00811 | 0.00001267 | 0.99954023 | GREAT SLIPPERSNAIL |
| 192 | 95030 | 0.00434 | 0.000 | 0.00000 | 0.00910 | 0.00001263 | 0.99955286 | LEAFY BRYOZOAN |
| 193 | 75600 | 0.00419 | 0.000 | 0.00000 | 0.01114 | 0.00001219 | 0.99956505 | ALASKA FALSEJINGLE (PREV. ROCK JINGLE) |
| 194 | 00310 | 0.00403 | 0.000 | 0.00000 | 0.01071 | 0.00001172 | 0.99957677 | SPINY DOGFISH |
| 195 | 71761 | 0.00383 | 0.000 | 0.00056 | 0.00709 | 0.00001113 | 0.99958789 | VOLUTOPSIUS MELONIS (=PYRULOFUSUS MELONIS) |
| 196 | 23235 | 0.00372 | 0.000 | 0.00000 | 0.00818 | 0.00001081 | 0.99959870 | CHUM SALMON |
| 197 | 75281 | 0.00370 | 0.000 | 0.00112 | 0.00629 | 0.00001077 | 0.99960947 | CLINOCARDIUM SP. |
| 198 | 21315 | 0.00370 | 0.000 | 0.00000 | 0.00808 | 0.00001075 | 0.99962022 | ARCTIC STAGHORN SCULPIN |
| 199 | 20006 | 0.00358 | 0.000 | 0.00172 | 0.00544 | 0.00001042 | 0.99963064 | SALBACK POACHER |
| 200 | 71530 | 0.00355 | 0.000 | 0.00040 | 0.00671 | 0.00001033 | 0.99964097 | ARCTIC MOONSNAIL |
| 201 | 71726 | 0.00347 | 0.000 | 0.00128 | 0.00567 | 0.00001011 | 0.99965108 | THICK-RIBBED WHELK |
| 202 | 80010 | 0.00342 | 0.000 | 0.00000 | 0.00908 | 0.00000994 | 0.99966101 | EVASTERIAS SP. |
| 203 | 66502 | 0.00339 | 0.000 | 0.00214 | 0.00464 | 0.00000986 | 0.99967088 | CRANGON SP. |
| 204 | 23808 | 0.00325 | 0.000 | 0.00159 | 0.00490 | 0.00000944 | 0.99968032 | SNAKE PRICKLEBACK |
| 205 | 75241 | 0.00324 | 0.000 | 0.00095 | 0.00552 | 0.00000941 | 0.99968973 | BENT-NOSE MACOMA (PREV. COMMON MACOMA) |
| 206 | 20035 | 0.00318 | 0.000 | 0.00131 | 0.00505 | 0.00000925 | 0.99969898 | GRAY STARSNOUT |
| 207 | 74120 | 0.00316 | 0.000 | 0.00000 | 0.00726 | 0.00000920 | 0.99970818 | WEATHERVANE SCALLOP |
| 208 | 22226 | 0.00312 | 0.000 | 0.00000 | 0.00664 | 0.00000908 | 0.99971726 | MONSTER SNAILFISH |
| 209 | 56312 | 0.00303 | 0.000 | 0.00004 | 0.00602 | 0.00000881 | 0.99972607 | DEPRESSED SCALE HORM |
| 210 | 99904 | 0.00282 | 0.000 | 0.00000 | 0.00729 | 0.00000821 | 0.99973427 | SEA CLOD |
| 211 | 80595 | 0.00274 | 0.000 | 0.00011 | 0.00536 | 0.00000796 | 0.99974224 | LEPTASTERIAS SP. |
| 212 | 71640 | 0.00235 | 0.000 | 0.00000 | 0.00614 | 0.00000682 | 0.99974906 | SLIPPER SHELL. |
| 213 | 10001 | 0.00231 | 0.000 | 0.00000 | 0.00472 | 0.00000670 | 0.99975576 | FLATFISH UNIDENT. |
| 214 | 74561 | 0.00230 | 0.000 | 0.00000 | 0.00517 | 0.00000670 | 0.99976246 | BLACK MUSSEL |
| 215 | 21354 | 0.00228 | 0.000 | 0.00000 | 0.00566 | 0.00000663 | 0.99976909 | SPECTACLED SCULPIN |
| 216 | 72420 | 0.00223 | 0.000 | 0.00000 | 0.00545 | 0.00000650 | 0.99977559 | BOREOTROPHON SP. (FORMERLY TROPHONOPSIS SP.) |
| 217 | 71722 | 0.00216 | 0.000 | 0.00074 | 0.00358 | 0.00000629 | 0.99978187 | OBLIOUE WHELK |
| 218 | 74439 | 0.00216 | 0.000 | 0.00000 | 0.00463 | 0.00000627 | 0.99978815 | TRENCHED NUTCLAM |
| 219 | 74104 | 0.00215 | 0.000 | 0.00000 | 0.00518 | 0.00000627 | 0.99979441 | CHLAMYS SP. |
| 220 | 74655 | 0.00212 | 0.000 | 0.00000 | 0.00466 | 0.00000616 | 0.99980057 | MANY-RIB CYClocardia |
| 221 | 00001 | 0.00206 | 0.000 | 0.00000 | 0.00533 | 0.00000599 | 0.99980657 | FISH EGGS UNIDENT. |
| 222 | 56310 | 0.00202 | 0.000 | 0.00097 | 0.00306 | 0.00000587 | 0.99981243 | EUNOE SP. |
| 223 | 81315 | 0.00198 | 0.000 | 0.00000 | 0.00408 | 0.00000576 | 0.99981819 | PTERASTER IESSELATUS |
| 224 | 71710 | 0.00193 | 0.000 | 0.00000 | 0.00399 | 0.00000562 | 0.99982381 | COLUS SP. |
| 225 | 71731 | 0.00191 | 0.000 | 0.00070 | 0.00313 | 0.00000557 | 0.99982938 | COLUS HALLI |
| 226 | 21350 | 0.00184 | 0.000 | 0.00003 | 0.00364 | 0.00000534 | 0.99983472 | TRIGLOPS SP. |
| 227 | 21592 | 0.00180 | 0.000 | 0.00007 | 0.00353 | 0.00000524 | 0.99983995 | PACIFIC SANDFISH |
| 228 | 69310 | 0.00172 | 0.000 | 0.00000 | 0.00385 | 0.00000501 | 0.99984496 | golden king crab |
| 229 | 23805 | 0.00168 | 0.000 | 0.00087 | 0.00249 | 0.00000488 | 0.99984984 | DAUBED SHANNY |
| 230 | 75286 | 0.00165 | 0.000 | 0.00000 | 0.00425 | 0.00000480 | 0.99985464 | BROAD COCKLE |
| 231 | 80660 | 0.00163 | 0.000 | 0.00000 | 0.00354 | 0.00000475 | 0.99985939 | PSEUDARCHASTER PARELII |
| 232 | 79020 | 0.00162 | 0.000 | 0.00000 | 0.00324 | 0.00000470 | 0.99986409 | ROSSIA PACIFICA |
| 233 | 71892 | 0.00156 | 0.000 | 0.00000 | 0.00317 | 0.00000454 | 0.99986864 | PLICIFUSUS INCISUS |
| 234 | 66580 | 0.00155 | 0.000 | 0.00066 | 0.00244 | 0.00000451 | 0.99987315 | ARCTIC ARGID |
| 235 | 65205 | 0.00151 | 0.000 | 0.00000 | 0.00373 | 0.00000439 | 0.99987754 | BEAKED BARNACLE |

Table c-1.--(Cont.).

| RANK | SPECIES | MEAN CPUE (KG/HA) | VARIANCE | 90 PERCE | $\begin{aligned} & \text { LNT } \\ & \text { LIMITS } \end{aligned}$ | PROPORTION | CUMULATIVE PROPORTIDN | NAME |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 236 | 71260 | 0.00144 | 0.000 | 0.00000 | 0.00382 | 0.00000418 | 0.99988172 | WHITE NIGHT DORIS (PREV. SNOU WHITE DORIS) |
| 237 | 75284 | 0.00143 | 0.000 | 0.00026 | 0.00261 | 0.00000417 | 0.99988589 | SERRIPES SP. |
| 238 | 72805 | 0.00142 | 0.000 | 0.00000 | 0.00348 | 0.00000414 | 0.99989003 | SMOOTH LAMELLARIA |
| 239 | 66570 | 0.00139 | 0.000 | 0.00065 | 0.00214 | 0.00000405 | 0.99989409 | ARGIS SP. |
| 240 | 74106 | 0.00136 | 0.000 | 0.00000 | 0.00278 | 0.00000394 | 0.99989803 | CHLAMYS RUBIDA |
| 241 | 21935 | 0.00134 | 0.000 | 0.00000 | 0.00356 | 0.00000390 | 0.99990193 | KELP GREENLING |
| 242 | 85210 | 0.00133 | 0.000 | 0.00000 | 0.00313 | 0.00000388 | 0.99990580 | PSOLUS SP. |
| 243 | 30240 | 0.00132 | 0.000 | 0.00000 | 0.00350 | 0.00000383 | 0.99990964 | YELLOUTAIL ROCKFISH |
| 244 | 21352 | 0.00129 | 0.000 | 0.00000 | 0.00340 | 0.00000376 | 0.99991340 | SCISSORTAIL SCULPIN |
| 245 | 69042 | 0.00120 | 0.000 | 0.00000 | 0.00319 | 0.00000349 | 0.99991689 | SPONGE HERMIT CRAB |
| 246 | 21340 | 0.00114 | 0.000 | 0.00034 | 0.00194 | 0.00000331 | 0.99992020 | BLACKFIN SCULPIN |
| 247 | 72758 | 0.00111 | 0.000 | 0.00000 | 0.00244 | 0.00000324 | 0.99992344 | GLACIAL WHELK |
| 248 | 80540 | 0.00109 | 0.000 | 0.00055 | 0.00163 | 0.00000318 | 0.99992662 | HENRICIA SP. |
| 249 | 24180 | 0.00107 | 0.000 | 0.00000 | 0.00284 | 0.00000310 | 0.99992972 | LYCODES SP. |
| 250 | 23809 | 0.00101 | 0.000 | 0.00000 | 0.00220 | 0.00000293 | 0.99993266 | PIGHEAD PRICKLEBACK |
| 251 | 74983 | 0.00099 | 0.000 | 0.00014 | 0.00184 | 0.00000287 | 0.99993553 | HAIRY COCKLE |
| 252 | 75267 | 0.00092 | 0.000 | 0.00022 | 0.00162 | 0.00000268 | 0.99993820 | ALASKA RAZOR (PREV. NORTHERN RAZOR CLAM) |
| 253 | 71012 | 0.00091 | 0.000 | 0.00000 | 0.00199 | 0.00000264 | 0.99994084 | GIANT ORANGE TOCHUI (PREV.ORANGE-PEEL NUDI.) |
| 254 | 20050 | 0.00091 | 0.000 | 0.00042 | 0.00139 | 0.00000263 | 0.99994348 | ALEUTIAN ALLIGATORFISH |
| 255 | 72756 | 0.00090 | 0.000 | 0.00017 | 0.00163 | 0.00000262 | 0.99994610 | BUCCINUM SOLENUM |
| 256 | 71535 | 0.00088 | 0.000 | 0.00000 | 0.00191 | 0.00000255 | 0.99994865 | natica aleutica |
| 257 | 21921 | 0.00087 | 0.000 | 0.00000 | 0.00230 | 0.00000252 | 0.99995117 | ATKA MACKEREL |
| 258 | 72403 | 0.00082 | 0.000 | 0.00000 | 0.00180 | 0.00000239 | 0.99995356 | BOREOTROPHON MURICIFORMIS (=TROPHON) |
| 259 | 21378 | 0.00070 | 0.000 | 0.00000 | 0.00185 | 0.00000203 | 0.99995558 | ARCTIC SCULPIN |
| 260 | 20202 | 0.00070 | 0.000 | 0.00019 | 0.00120 | 0.00000202 | 0.99995760 | PACIFIC SAND LANCE |
| 261 | 71774 | 0.00063 | 0.000 | 0.00000 | 0.00168 | 0.00000184 | 0.99995944 | BERINGIUS STIMPSONI |
| 262 | 10180 | 0.00059 | 0.000 | 0.00003 | 0.00115 | 0.00000171 | 0.99996116 | DOVER SOLE |
| 263 | 21388 | 0.00058 | 0.000 | 0.00000 | 0.00129 | 0.00000170 | 0.99996285 | ANTLERED SCULPIN |
| 264 | 68020 | 0.00057 | 0.000 | 0.00000 | 0.00151 | 0.00000165 | 0.99996450 | DUNGENESS CRAB |
| 265 | 74416 | 0.00055 | 0.000 | 0.00000 | 0.00146 | 0.00000159 | 0.99996609 | CRISSCROSSED YOLDIA |
| 266 | 75240 | 0.00054 | 0.000 | 0.00000 | 0.00133 | 0.00000157 | 0.99996766 | MACOMA SP. |
| 267 | 92500 | 0.00049 | 0.000 | 0.00000 | 0.00130 | 0.00000143 | 0.99996909 | NEMERTEAN WORM UNIDENT. |
| 268 | 95060 | 0.00049 | 0.000 | 0.00000 | 0.00130 | 0.00000142 | 0.99997051 | ESCHAROPSIS SARSI |
| 269 | 80729 | 0.00048 | 0.000 | 0.00000 | 0.00106 | 0.00000139 | 0.99997190 | RED BAT STAR |
| 270 | 71575 | 0.00047 | 0.000 | 0.00004 | 0.00090 | 0.00000136 | 0.99997326 | POLINICES SP. |
| 271 | 71030 | 0.00045 | 0.000 | 0.00000 | 0.00103 | 0.00000132 | 0.99997458 | ROSY TRITONIA (PREV.OIOMEDES' TRITON) |
| 272 | 22175 | 0.00044 | 0.000 | 0.00000 | 0.00116 | 0.00000129 | 0.99997587 | SMOOTH LUMPSUCKER |
| 273 | 66601 | 0.00041 | 0.000 | 0.00000 | 0.00087 | 0.00000120 | 0.99997707 | TANK SHRIMP (SCULPTURED SHRIMP) |
| 274 | 75264 | 0.00041 | 0.000 | 0.00000 | 0.00086 | 0.00000120 | 0.99997827 | SILIOUA SP. |
| 275 | 72790 | 0.00041 | 0.000 | 0.00000 | 0.00109 | 0.00000119 | 0.99997946 | ALASKA VOLUTE |
| 276 | 74050 | 0.00037 | 0.000 | 0.00005 | 0.00070 | 0.00000109 | 0.99998055 | MUSSEL UNIDENT. |
| 277 | 74100 | 0.00037 | 0.000 | 0.00000 | 0.00093 | 0.00000109 | 0.99998164 | SCALLOP UNIDENT. |
| 278 | 74981 | 0.00037 | 0.000 | 0.00000 | 0.00098 | 0.00000107 | 0.99998271 | COCKLE UNIDENT. |
| 279 | 72531 | 0.00035 | 0.000 | 0.00000 | 0.00090 | 0.00000102 | 0.99998372 | MARGARITES SP. |
| 280 | 80546 | 0.00029 | 0.000 | 0.00005 | 0.00053 | 0.00000084 | 0.99998457 | HENRICIA TUMIDA |
| 281 | 21300 | 0.00029 | 0.000 | 0.00000 | 0.00065 | 0.00000083 | 0.99998540 | SCULPIN UNIDENT. |
| 282 | 75247 | 0.00029 | 0.000 | 0.00000 | 0.00076 | 0.00000083 | 0.99998623 | HEAVY MACOMA |

Table C-I.--(Cont.).

| RANK | SPECIES | $\begin{gathered} \text { MEAN CPUE } \\ (K G / H A) \end{gathered}$ | VARIANCE | $\begin{array}{r} 90 \\ \text { CONF } 108 \end{array}$ | $\begin{aligned} & \text { NT } \\ & \text { LIMITS } \\ & \hline \end{aligned}$ | PROPORTION | CUMULATIVE PROPORTION | NAME |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 283 | 75242 | 0.00029 | 0.000 | 0.00000 | 0.00076 | 0.00000083 | 0.99998707 | CHALKY MACOMA |
| 284 | 66020 | 0.00027 | 0.000 | 0.00000 | 0.00058 | 0.00000079 | 0.99998786 | PANDALUS SP. |
| 285 | 20000 | 0.00027 | 0.000 | 0.00000 | 0.00058 | 0.00000079 | 0.99998865 | POACHER UNIDENT. |
| 286 | 75201 | 0.00026 | 0.000 | 0.00003 | 0.00048 | 0.00000075 | 0.99998939 | TELLINA SP. |
| 287 | 21405 | 0.00025 | 0.000 | 0.00000 | 0.00052 | 0.00000072 | 0.99999012 | EYESHADE SCULPIN |
| 288 | 66175 | 0.00024 | 0.000 | 0.00003 | 0.00046 | 0.00000071 | 0.99999082 | EUALUS GAIMARDII BELCHERI |
| 289 | 66033 | 0.00022 | 0.000 | 0.00000 | 0.00053 | 0.00000065 | 0.99999147 | YELLOWLEG PANOALID |
| 290 | 95080 | 0.00021 | 0.000 | 0.00000 | 0.00048 | 0.00000061 | 0.99999208 | CORAL BRYOZOAN. |
| 291 | 74080 | 0.00020 | 0.000 | 0.00000 | 0.00048 | 0.00000059 | 0.99999268 | BLUE MUSSEL (PREV. BAY MUSSEL) |
| 292 | 74414 | 0.00018 | 0.000 | 0.00000 | 0.00047 | 0.00000052 | 0.99999319 | YOLDIA SP. |
| 293 | 74060 | 0.00017 | 0.000 | 0.00000 | 0.00044 | 0.00000048 | 0.99999367 | NORTHERN HORSEMUSSEL (PREV. HORSE MUSSEL) |
| 294 | 66050 | 0.00016 | 0.000 | 0.00000 | 0.00042 | 0.00000046 | 0.99999413 | COONSIRIPE SHRIMP |
| 295 | 66548 | 0.00016 | 0.000 | 0.00000 | 0.00042 | 0.00000046 | 0.99999459 | SAND SHRIMP |
| 296 | 74435 | 0.00015 | 0.000 | 0.00000 | 0.00035 | 0.00000043 | 0.99999502 | nuculana sp. |
| 297 | 40011 | 0.00013 | 0.000 | 0.00000 | 0.00035 | 0.00000038 | 0.99999540 | HYDROID UNIDENT. |
| 298 | 81060 | 0.00011 | 0.000 | 0.00000 | 0.00031 | 0.00000033 | 0.99999573 | SOLASTER SP. |
| 299 | 94500 | 0.00011 | 0.000 | 0.00000 | 0.00030 | 0.00000033 | 0.99999606 | ECHIUROID WORM UNIDENT. |
| 300 | 74982 | 0.00010 | 0.000 | 0.00000 | 0.00023 | 0.00000029 | 0.99999635 | NUTTAL COCKLE |
| 301 | 21441 | 0.00009 | 0.000 | 0.00000 | 0.00025 | 0.00000027 | 0.99999662 | SPATULATE SCULPIN |
| 302 | 82530 | 0.00008 | 0.000 | 0.00000 | 0.00022 | 0.00000024 | 0.99999686 | ORANGE-PINK SEA URCHIN |
| 303 | 20055 | 0.00008 | 0.000 | 0.00000 | 0.00021 | 0.00000023 | 0.99999709 | SMOOTH ALLIGATORFISH |
| 304 | 70100 | 0.00008 | 0.000 | 0.00000 | 0.00021 | 0.00000023 | 0.99999732 | CHITON UNIDENT. |
| 305 | 69336 | 0.00007 | 0.000 | 0.00000 | 0.00016 | 0.00000022 | 0.99999754 | SCALED CRAB |
| 306 | 79000 | 0.00007 | 0.000 | 0.00000 | 0.00019 | 0.00000021 | 0.99999775 | SQUID UNIDENT. |
| 307 | 74440 | 0.00007 | 0.000 | 0.00000 | 0.00017 | 0.00000019 | 0.99999794 | STOUT NUTCLAM |
| 308 | 72304 | 0.00006 | 0.000 | 0.00000 | 0.00016 | 0.00000018 | 0.99999812 | CROWNED HAIRYSNAIL |
| 309 | 21345 | 0.00006 | 0.000 | 0.00000 | 0.00016 | 0.00000017 | 0.99999829 | LONGFIN IRISH LORD |
| 310 | 71890 | 0.00006 | 0.000 | 0.00000 | 0.00015 | 0.00000017 | 0.99999846 | PLICIFUSUS SP. |
| 311 | 22178 | 0.00006 | 0.000 | 0.00000 | 0.00013 | 0.00000016 | 0.99999862 | PACIFIC SPINY LUMPSUCKER |
| 312 | 81090 | 0.00005 | 0.000 | 0.00000 | 0.00014 | 0.00000015 | 0.99999878 | CROSSASTER SP. |
| 313 | 20002 | 0.00005 | 0.000 | 0.00000 | 0.00012 | 0.00000014 | 0.99999892 | DRAGON POACHER |
| 314 | 21339 | 0.00005 | 0.000 | 0.00000 | 0.00012 | 0.00000013 | 0.99999905 | MALACOCOTTUS SP. |
| 315 | 20038 | 0.00004 | 0.000 | 0.00000 | 0.00010 | 0.00000011 | 0.99999916 | BLACKFIN POACHER |
| 316 | 23843 | 0.00003 | 0.000 | 0.00000 | 0.00009 | 0.00000010 | 0.99999926 | BEARDED WARBONNET |
| 317 | 71724 | 0.00003 | 0.000 | 0.00000 | 0.00009 | 0.00000009 | 0.99999935 | ROSY WHELK |
| 318 | 20001 | 0.00003 | 0.000 | 0.00000 | 0.00008 | 0.00000009 | 0.99999944 | TUBENOSE POACHER |
| 319 | 23806 | 0.00003 | 0.000 | 0.00000 | 0.00008 | 0.00000008 | 0.99999953 | STOUT EELBLENNY |
| 320 | 66150 | 0.00003 | 0.000 | 0.00000 | 0.00007 | 0.00000008 | 0.99999961 | HIPPOLYTID SHRIMP UNIDENT. |
| 321 | 23850 | 0.00003 | 0.000 | 0.00000 | 0.00007 | 0.00000008 | 0.99999969 | UHITEBARRED PRICKLEBACK |
| 322 | 23800 | 0.00003 | 0.000 | 0.00000 | 0.00007 | 0.00000008 | 0.99999976 | PRICKLEBACK UNIDENT. |
| 323 | 93100 | 0.00002 | 0.000 | 0.00000 | 0.00006 | 0.00000007 | 0.99999983 | PRIAPULID WORM UNIDENT. |
| 324 | 66030 | 0.00002 | 0.000 | 0.00000 | 0.00005 | 0.00000006 | 0.99999989 | OCEAN SHRIMP (PREV. OCEAN PINK SHRIMP) |
| 325 | 69316 | 0.00002 | 0.000 | 0.00000 | 0.00005 | 0.00000006 | 0.99999995 | HAPALOGASTER GREBNITZKII |
| 326 | 23000 | 0.00002 | 0.000 | 0.00000 | 0.00005 | 0.00000005 | 1.00000000 | SMELT UNIDENT. |
| | TOTAL | 343.86096 | | | | | | | the conti nental slope

Table C-2.-(Cont.).

| RANK | SPECIES | mean cpue (KG/HA) | VARIANCE | $\begin{array}{r} 90 \mathrm{Pl} \\ \text { CONFIDE } \end{array}$ | $\begin{aligned} & \text { SNT } \\ & \text { LIMITS } \end{aligned}$ | PROPORTIOH | $\begin{aligned} & \text { CUMULATIVE } \\ & \text { PROPORTION } \end{aligned}$ | NAME |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 48 | 24100 | 0.04129 | 0.001 | 0.00000 | 0.09347 | 0.00022417 | 0.99607566 | EELPOUT UNIDENT. |
| 49 | 22200 | 0.03700 | 0.000 | 0.01177 | 0.06224 | 0.00020088 | 0.99627654 | SNAILFISH UNIDENT. |
| 50 | 66000 | 0.03369 | 0.000 | 0.00000 | 0.06803 | 0.00018292 | 0.99645946 | SHRIMP UNIDENT. |
| 51 | 80000 | 0.03297 | 0.000 | 0.01435 | 0.05159 | 0.00017900 | 0.99663846 | STARFISH UNIDENT. |
| 52 | 69310 | 0.03181 | 0.000 | 0.00911 | 0.05451 | 0.00017269 | 0.99681115 | GOLDEN KING CRAB |
| 53 | 23240 | 0.03145 | 0.000 | 0.00021 | 0.06269 | 0.00017072 | 0.99698187 | SOCKEYE SALMON |
| 54 | 00450 | 0.02750 | 0.001 | 0.00000 | 0.07311 | 0.00014931 | 0.99713118 | STARRY SKATE |
| 55 | 22600 | 0.02722 | 0.000 | 0.01113 | 0.04332 | 0.00014779 | 0.99727897 | LANTERNFISH UNIDENT. |
| 56 | 21731 | 0.02677 | 0.000 | 0.01685 | 0.03669 | 0.00014533 | 0.99742430 | PACIFIC FLATNOSE |
| 57 | 78010 | 0.02607 | 0.000 | 0.00648 | 0.04567 | 0.00014154 | 0.99756585 | OCTOPUS UNIDENT. |
| 58 | 20720 | 0.02529 | 0.000 | 0.00088 | 0.04971 | 0.00013731 | 0.99770315 | SEARCHER |
| 59 | 78012 | 0.02522 | 0.000 | 0.01018 | 0.04025 | 0.00013689 | 0.99784005 | SMOOTHSKIN OCTOPUS |
| 60 | 30010 | 0.02389 | 0.001 | 0.00000 | 0.06349 | 0.00012967 | 0.99796971 | THORNYHEAD UNIDENT. |
| 61 | 10180 | 0.02300 | 0.000 | 0.01012 | 0.03588 | 0.00012486 | 0.99809457 | DOVER SOLE |
| 62 | 20035 | 0.02237 | 0.000 | 0.00000 | 0.04488 | 0.00012142 | 0.99821599 | GRAY STARSNOUT |
| 63 | 24185 | 0.02098 | 0.000 | 0.00540 | 0.03655 | 0.00011388 | 0.99832987 | WATILED EELPOUT |
| 64 | 21390 | 0.01988 | 0.000 | 0.01102 | 0.02874 | 0.00010792 | 0.99843779 | SPINYHEAD SCULPIN |
| 65 | 20038 | 0.01919 | 0.000 | 0.01047 | 0.02792 | 0.00010419 | 0.99854198 | BLACKFIN POACHER |
| 66 | 71820 | 0.01914 | 0.000 | 0.00000 | 0.03917 | 0.00010388 | 0.99864585 | PRIBILOF WHELK |
| 67 | 21355 | 0.01614 | 0.000 | 0.00959 | 0.02268 | 0.00008760 | 0.99873345 | RIBBED SCULPIN |
| 68 | 21300 | 0.01054 | 0.000 | 0.00000 | 0.02313 | 0.00005722 | 0.99879068 | SCULPIN UNIDENT. |
| 69 | 00410 | 0.00974 | 0.000 | 0.00000 | 0.02178 | 0.00005288 | 0.99884356 | DEEPSEA SKATE |
| 70 | 21395 | 0.00964 | 0.000 | 0.00000 | 0.02562 | 0.00005233 | 0.99889589 | BLOB SCULPIN |
| 71 | 81092 | 0.00888 | 0.000 | 0.00448 | 0.01327 | 0.00004818 | 0.99894407 | CROSSASTER BOREALIS |
| 72 | 21439 | 0.00848 | 0.000 | 0.00349 | 0.01347 | 0.00004603 | 0.99899010 | POREHEAD SCULPIN |
| 73 | 21370 | 0.00798 | 0.000 | 0.00000 | 0.02120 | 0.00004329 | 0.99903339 | great sculpin |
| 74 | 20006 | 0.00796 | 0.000 | 0.00072 | 0.01520 | 0.00004321 | 0.99907660 | SAWBACK POACHER |
| 75 | 10260 | 0.00779 | 0.000 | 0.00120 | 0.01438 | 0.00004230 | 0.99911890 | ROCK SOLE |
| 76 | 23235 | 0.00723 | 0.000 | 0.00000 | 0.01533 | 0.00003924 | 0.99915814 | CHUM SALMON |
| 77 | 81060 | 0.00722 | 0.000 | 0.00112 | 0.01332 | 0.00003919 | 0.99919733 | SOLASTER SP. |
| 78 | 00021 | 0.00633 | 0.000 | 0.00348 | 0.00918 | 0.00003436 | 0.99923169 | PACIFIC LAMPREY |
| 79 | 20622 | 0.00614 | 0.000 | 0.00370 | 0.00858 | 0.00003334 | 0.99926503 | NORTHERN SMOOTHTONGUE |
| 80 | 71500 | 0.00612 | 0.000 | 0.00115 | 0.01108 | 0.00003321 | 0.99929823 | SNAIL UNIDENT. |
| 81 | 68560 | 0.00576 | 0.000 | 0.00119 | 0.01032 | 0.00003126 | 0.99932949 | BROAD SNOW CRAB (=TANNER CRAB(BAIRDI)) |
| 82 | 23010 | 0.00567 | 0.000 | 0.00000 | 0.01198 | 0.00003076 | 0.99936025 | EULACHON |
| 83 | 72500 | 0.00554 | 0.000 | 0.00168 | 0.00939 | 0.00003006 | 0.99939032 | OREGON TRITON |
| 84 | 81870 | 0.00508 | 0.000 | 0.00000 | 0.01131 | 0.00002759 | 0.99941790 | DIPSACASTER BOREALIS |
| 85 | 20100 | 0.00485 | 0.000 | 0.00121 | 0.00848 | 0.00002631 | 0.99944421 | SLICKHEAD UNIDENT. |
| 86 | 21340 | 0.00479 | 0.000 | 0.00000 | 0.01007 | 0.00002600 | 0.99947021 | BLACKFIN SCULPIN |
| 87 | 72752 | 0.00458 | 0.000 | 0.00251 | 0.00664 | 0.00002484 | 0.99949505 | LADDER WHELK (PREV. SILKY WHELK) |
| 88 | 79000 | 0.00443 | 0.000 | 0.00116 | 0.00771 | 0.00002407 | 0.99951912 | SQUID UNIDENT. |
| 89 | 10190 | 0.00406 | 0.000 | 0.00000 | 0.00821 | 0.00002202 | 0.99954114 | DEEPSEA SOLE |
| 90 | 79020 | 0.00377 | 0.000 | 0.00151 | 0.00604 | 0.00002048 | 0.99956162 | ROSSIA PACIFICA |
| 91 | 21010 | 0.00312 | 0.000 | 0.00133 | 0.00490 | 0.00001691 | 0.99957854 | PACIFIC VIPERFISH |
| 92 | 22610 | 0.00309 | 0.000 | 0.00000 | 0.00680 | 0.00001678 | 0.99959531 | CALIFORNIA HEADLIGHTFISH |
| 93 | 71800 | 0.00307 | 0.000 | 0.00000 | 0.00803 | 0.00001665 | 0.99961197 | NEPTUNEA SP. |
| 94 | 72740 | 0.00284 | 0.000 | 0.00081 | 0.00488 | 0.00001544 | 0.99962741 | BUCCINUM SP. |

Table C-2.--(Cont.)

| RANK | SPECIES | MEAN CPUE (KG/HA) | VARIANCE | 90 PERCENTCONFIDENCE LIMITS | | PROPORTION | CUMULATIVE PROPORTION | NAME |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 95 | 30150 | 0.00284 | 0.000 | 0.00000 | 0.00754 | 0.00001539 | 0.99964280 | DUSKY ROCKFISH |
| 96 | 21347 | 0.00279 | 0.000 | 0.00000 | 0.00606 | 0.00001512 | 0.99965792 | YELLOW IRISH LORD |
| 97 | 69335 | 0.00254 | 0.000 | 0.00000 | 0.00598 | 0.00001381 | 0.99967173 | PARALOMIS MULTISPINA |
| 98 | 81910 | 0.00248 | 0.000 | 0.00096 | 0.00401 | 0.00001348 | 0.99968522 | LUIDIASTER DAWSONI |
| 99 | 21438 | 0.00232 | 0.000 | 0.00000 | 0.00572 | 0.00001258 | 0.99969779 | THORNY SCULPIN |
| 100 | 56311 | 0.00218 | 0.000 | 0.00000 | 0.00454 | 0.00001184 | 0.99970964 | GIANT SCALE WORM |
| 101 | 23055 | 0.00212 | 0.000 | 0.00000 | 0.00484 | 0.00001149 | 0.99972113 | RAINBOW SMELT |
| 102 | 72790 | 0.00183 | 0.000 | 0.00000 | 0.00420 | 0.00000993 | 0.99973106 | ALASKA VOLUTE |
| 103 | 30420 | 0.00174 | 0.000 | 0.00000 | 0.00463 | 0.00000945 | 0.99974051 | NORTHERN ROCKFISH |
| 104 | 50160 | 0.00165 | 0.000 | 0.00090 | 0.00240 | 0.00000896 | 0.99974947 | SEA MOUSE UNIDENT. |
| 105 | 80730 | 0.00165 | 0.000 | 0.00061 | 0.00269 | 0.00000895 | 0.99975841 | ORANGE BAT STAR |
| 106 | 69070 | 0.00159 | 0.000 | 0.00033 | 0.00284 | 0.00000861 | 0.99976702 | KNOBBYHAND HERMIT CRAB |
| 107 | 22912 | 0.00155 | 0.000 | 0.00070 | 0.00240 | 0.00000841 | 0.99977543 | ONEIRODES SP. |
| 108 | 66060 | 0.00147 | 0.000 | 0.00000 | 0.00311 | 0.00000799 | 0.99978342 | PANDALOPSIS ALEUTICA |
| 109 | 00485 | 0.00143 | 0.000 | 0.00000 | 0.00379 | 0.00000774 | 0.99979116 | WHITEBROW SKATE |
| 110 | 71764 | 0.00142 | 0.000 | 0.00000 | 0.00376 | 0.00000768 | 0.99979884 | TULIP WHELK |
| 111 | 66570 | 0.00139 | 0.000 | 0.00073 | 0.00205 | 0.00000754 | 0.99980638 | ARGIS SP. |
| 112 | 69300 | 0.00138 | 0.000 | 0.00000 | 0.00281 | 0.00000747 | 0.99981386 | LITHODES COUESI |
| 113 | 66770 | 0.00132 | 0.000 | 0.00021 | 0.00244 | 0.00000717 | 0.99982103 | GLASS SHRIMP |
| 114 | 69086 | 0.00128 | 0.000 | 0.00018 | 0.00237 | 0.00000692 | 0.99982795 | FUZZY HERMIT CRAB |
| 115 | 00495 | 0.00127 | 0.000 | 0.00000 | 0.00285 | 0.00000688 | 0.99983483 | OKHOTSK SKATE |
| 116 | 81360 | 0.00121 | 0.000 | 0.00000 | 0.00287 | 0.00000659 | 0.99984142 | DIPLOPIERASTER MULTIPES |
| 117 | 83020 | 0.00121 | 0.000 | 0.00000 | 0.00298 | 0.00000656 | 0.99984799 | GORGONOCEPHALUS CARYI |
| 118 | 21446 | 0.00110 | 0.000 | 0.00000 | 0.00237 | 0.00000595 | 0.99985393 | ICELUS SP. |
| 119 | 69100 | 0.00108 | 0.000 | 0.00000 | 0.00231 | 0.00000585 | 0.99985978 | PAGURUS TANNERI |
| 120 | 24191 | 0.00105 | 0.000 | 0.00000 | 0.00219 | 0.00000569 | 0.99986547 | SHORTFIN EELPOUT |
| 121 | 69095 | 0.00104 | 0.000 | 0.00000 | 0.00233 | 0.00000564 | 0.99987111 | LONGFINGER HERMIT |
| 122 | 21110 | 0.00096 | 0.000 | 0.00000 | 0.00255 | 0.00000521 | 0.99987632 | PACIFIC HERRING |
| 123 | 69010 | 0.00094 | 0.000 | 0.00028 | 0.00160 | 0.00000510 | 0.99988142 | HERMIT CRAB UNIDENT. |
| 124 | 24152 | 0.00091 | 0.000 | 0.00013 | 0.00169 | 0.00000494 | 0.99988636 | KAMCHATKA EELPOUT |
| 125 | 66020 | 0.00091 | 0.000 | 0.00000 | 0.00241 | 0.00000492 | 0.99989128 | PANDALUS SP. |
| 126 | 68580 | 0.00091 | 0.000 | 0.00000 | 0.00201 | 0.00000492 | 0.99989620 | NARROW SNOW CRAB(=TANNER CRAB(OPILIO)) |
| 127 | 71835 | 0.00090 | 0.000 | 0.00000 | 0.00184 | 0.00000486 | 0.99990106 | NEPTUNEA BOREALIS |
| 128 | 66033 | 0.00089 | 0.000 | 0.00016 | 0.00163 | 0.00000486 | 0.99990592 | YELLOWLEG PANDALID |
| 129 | 81355 | 0.00086 | 0.000 | 0.00000 | 0.00188 | 0.00000467 | 0.99991059 | PTERASTER OBSCURUS |
| 130 | 99994 | 0.00081 | 0.000 | 0.00000 | 0.00216 | 0.00000441 | 0.99991500 | EMPTY GASTROPOD SHELLS |
| 131 | 69060 | 0.00080 | 0.000 | 0.00000 | 0.00169 | 0.00000432 | 0.99991932 | ALEUTIAN HERMIT |
| 132 | 56312 | 0.00079 | 0.000 | 0.00018 | 0.00139 | 0.00000426 | 0.99992358 | DEPRESSED SCALE WORM |
| 133 | 66772 | 0.00076 | 0.000 | 0.00026 | 0.00126 | 0.00000413 | 0.99992771 | CRIMSON PASIPHAEID |
| 134 | 43040 | 0.00074 | 0.000 | 0.00000 | 0.00154 | 0.00000403 | 0.99993173 | TEALIA SP. |
| 135 | 83400 | 0.00062 | 0.000 | 0.00000 | 0.00138 | 0.00000338 | 0.99993511 | OPHIOPHOLIS ACULEATA |
| 136 | 66580 | 0.00062 | 0.000 | 0.00000 | 0.00164 | 0.00000336 | 0.99993847 | ARCTIC ARGID |
| 137 | 68578 | 0.00060 | 0.000 | 0.00002 | 0.00118 | 0.00000326 | 0.99994173 | NORTH PACIFIC TOAD CRAB(=hYAS CRAB) |
| 138 | 71001 | 0.00051 | 0.000 | 0.00007 | 0.00095 | 0.00000279 | 0.99994452 | SNAIL (GASTROPOD) EGGS |
| 139 | 22900 | 0.00051 | 0.000 | 0.00000 | 0.00119 | 0.00000275 | 0.99994727 | DREAMER UNIDENT. |
| 140 | 20614 | 0.00048 | 0.000 | 0.00000 | 0.00102 | 0.00000261 | 0.99994988 | DEEPSEA SMELT UNIDENT. |
| 141 | 71870 | 0.00043 | 0.000 | 0.00000 | 0.00093 | 0.00000234 | 0.99995222 | LYRE WHELK |

Table C-2.--(Cont.).

| HEAN CPUE | | | | 90 PERCENT | | $\begin{array}{ll} & \text { CUMULATIVE } \\ \text { PROPORTION } & \text { PROPORTION }\end{array}$ | | NAME |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| RANK | SPECIES | (KG/HA) | VARIANCE | CONFIDE | LIMITS | | | |
| 142 | 71756 | 0.00040 | 0.000 | 0.00000 | 0.00106 | 0.00000217 | 0.99995439 | FRAGILE WHELK |
| 143 | 81095 | 0.00039 | 0.000 | 0.00000 | 0.00094 | 0.00000214 | 0.99995653 | ROSE SEA STAR |
| 144 | 82526 | 0.00039 | 0.000 | 0.00005 | 0.00073 | 0.00000212 | 0.99995865 | WHITE SEA URCHIN |
| 145 | 80540 | 0.00039 | 0.000 | 0.00006 | 0.00072 | 0.00000212 | 0.99996077 | HENRICIA SP. |
| 146 | 80650 | 0.00038 | 0.000 | 0.00000 | 0.00100 | 0.00000205 | 0.99996282 | HIPPASTERIA SPINOSA |
| 147 | 97000 | 0.00036 | 0.000 | 0.00000 | 0.00074 | 0.00000194 | 0.99996476 | ERACHIOPOD UNIDENT. |
| 148 | 82510 | 0.00036 | 0.000 | 0.00000 | 0.00073 | 0.00000194 | 0.99996670 | GREEN SEA URCHIN |
| 149 | 22300 | 0.00035 | 0.000 | 0.00004 | 0.00066 | 0.00000193 | 0.99996863 | BIGSCALE UNIDENT. |
| 150 | 74106 | 0.00035 | 0.000 | 0.00000 | 0.00081 | 0.00000192 | 0.99997055 | CHLAMYS RUBIDA |
| 151 | 80595 | 0.00035 | 0.000 | 0.00000 | 0.00071 | 0.00000190 | 0.99997246 | LEPTASTERIAS SP. |
| 152 | 71761 | 0.00032 | 0.000 | 0.00000 | 0.00086 | 0.00000175 | 0.99997420 | VOLUTOPSIUS MELONIS (=PYRULOFUSUS MELONIS) |
| 153 | 66150 | 0.00032 | 0.000 | 0.00000 | 0.00065 | 0.00000172 | 0.99997593 | HIPPOLYTID SHRIMP UNIDENT. |
| 154 | 71710 | 0.00029 | 0.000 | 0.00000 | 0.00066 | 0.00000155 | 0.99997748 | COLUS SP. |
| 155 | 66004 | 0.00026 | 0.000 | 0.00001 | 0.00051 | 0.00000141 | 0.99997888 | SERGESTES SP. |
| 156 | 81315 | 0.00024 | 0.000 | 0.00000 | 0.00053 | 0.00000131 | 0.99998019 | PTERASTER TESSELATUS |
| 157 | 21350 | 0.00024 | 0.000 | 0.00001 | 0.00046 | 0.00000129 | 0.99998148 | TRIGLOPS SP. |
| 158 | 23603 | 0.00024 | 0.000 | 0.00000 | 0.00062 | 0.00000128 | 0.99998276 | NORTHERN PEARLEYE |
| 159 | 71759 | 0.00021 | 0.000 | 0.00000 | 0.00056 | 0.00000115 | 0.99998391 | THREADED WHELK |
| 160 | 71010 | 0.00019 | 0.000 | 0.00000 | 0.00041 | 0.00000104 | 0.99998494 | NUDIBRANCH UNIDENT. |
| 161 | 85210 | 0.00019 | 0.000 | 0.00000 | 0.00041 | 0.00000104 | 0.99998598 | PSOLUS SP. |
| 162 | 69121 | 0.00018 | 0.000 | 0.00000 | 0.00040 | 0.00000100 | 0.99998698 | ELASSOCHIRUS CAVIMANUS |
| 163 | 66515 | 0.00016 | 0.000 | 0.00000 | 0.00034 | 0.00000085 | 0.99998784 | COMMON CRANGON |
| 164 | 41100 | 0.00014 | 0.000 | 0.00000 | 0.00038 | 0.00000078 | 0.99998862 | SOFT CORAL UNIDENT. |
| 165 | 56300 | 0.00014 | 0.000 | 0.00000 | 0.00037 | 0.00000076 | 0.99998938 | SCALE WORM UNIDENT. |
| 166 | 23962 | 0.00014 | 0.000 | 0.00000 | 0.00030 | 0.00000075 | 0.99999013 | BARRELEYE |
| 167 | 21000 | 0.00012 | 0.000 | 0.00000 | 0.00032 | 0.00000066 | 0.99999078 | VIPERFISH UNIDENT. |
| 168 | 45000 | 0.00011 | 0.000 | 0.00000 | 0.00030 | 0.00000061 | 0.99999140 | COMB JELLY UNIDENT. |
| 169 | 69042 | 0.00010 | 0.000 | 0.00000 | 0.00028 | 0.00000056 | 0.99999196 | SPONGE HERMIT CRAB |
| 170 | 82675 | 0.00010 | 0.000 | 0.00000 | 0.00027 | 0.00000055 | 0.99999251 | BRISASTER LATIFRONS |
| 171 | 71726 | 0.00010 | 0.000 | 0.00000 | 0.00027 | 0.00000055 | 0.99999305 | THICK-RIBBED WHELK |
| 172 | 20050 | 0.00010 | 0.000 | 0.00000 | 0.00026 | 0.00000053 | 0.99999359 | ALEUTIAN ALLIGATORFISH |
| 173 | 72063 | 0.00009 | 0.000 | 0.00000 | 0.00025 | 0.00000051 | 0.99999410 | KEELED AFORIA |
| 174 | 23620 | 0.00009 | 0.000 | 0.00000 | 0.00025 | 0.00000051 | 0.99999461 | SCALY PAPERBONE (PREV. SCALY NEARYFISH) |
| 175 | 82500 | 0.00009 | 0.000 | 0.00000 | 0.00024 | 0.00000050 | 0.99999511 | SEA URCHIN UNIDENT. |
| 176 | 81780 | 0.00009 | 0.000 | 0.00000 | 0.00024 | 0.00000049 | 0.99999560 | COMMON MUD STAR |
| 177 | 66171 | 0.00009 | 0.000 | 0.00000 | 0.00024 | 0.00000049 | 0.99999608 | EUALUS BARBATUS |
| 178 | 82530 | 0.00009 | 0.000 | 0.00000 | 0.00024 | 0.00000049 | 0.99999657 | ORANGE-PINK SEA URCHIN |
| 179 | 80594 | 0.00009 | 0.000 | 0.00000 | 0.00023 | 0.00000047 | 0.99999704 | LEPTASTERIAS ARCTICA |
| 180 | 69520 | 0.00008 | 0.000 | 0.00000 | 0.00022 | 0.00000045 | 0.99999749 | HYAS SP. |
| 181 | 81130 | 0.00008 | 0.000 | 0.00000 | 0.00022 | 0.00000044 | 0.99999794 | LOPHASTER FURCILLIGER |
| 182 | 21800 | 0.00008 | 0.000 | 0.00000 | 0.00022 | 0.00000044 | 0.99999838 | BRISTLEMOUTH UNIDENT. (PREV. ANGLEMOUTH) |
| 183 | 66530 | 0.00008 | 0.000 | 0.00000 | 0.00021 | 0.00000044 | 0.99999882 | RIDGED CRANGON |
| 184 | 99904 | 0.00008 | 0.000 | 0.00000 | 0.00021 | 0.00000043 | 0.99999924 | SEA CLOD |
| 185 | 98000 | 0.00008 | 0.000 | 0.00000 | 0.00020 | 0.00000041 | 0.99999965 | TUNICATE UNIDENT. |
| 186 | 50000 | 0.00006 | 0.000 | 0.00000 | 0.00017 | 0.00000035 | 1.00000000 | POLYCHAETE WORM UNIDENT. |
| | TOTAL | 184.20927 | | | | | | |

Table C- 3.-- Rank order of fish and invertebrate taxa by rel ative abundance ($\mathrm{kg} / \mathrm{ha}$) from the $1988 \mathrm{U} . \mathrm{S}$. bottom traw survey of the continental shel f and the 1988 U.S.-Japan bottom traw survey of the continental sl ope conbi ned.

| RANK | SPECIES | MEAN CPUE (KG/HA) | VARIANCE | 90 PERCENT | | | CUMULATIVE PROPORTION | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 21740 | 117.47643 | 130.493 | 98.53844 | 136.41442 | PROPORTION | PROPORTION | NAME | |
| 2 | 10210 | 48.00595 | 14.059 | 41.78984 | 54.22206 | 0.14178456 | 0.48874872 | WALLEYE POLLOCK YELLOWFIN SOLE | |
| 3 | 10260 | 29.94701 | 3.825 | 26.70455 | 33.18947 | 0.08844786 | 0.57719658 | ROCK SOLE | |
| 4 | 68580 | 17.54658 | 1.613 | 15.44107 | 19.65209 | 0.05182346 | 0.62902003 | NARROW SNOH CRAB(=TANNER CRAB(OPILIO)) | |
| 5 | 10285 | 16.58872 | 6.424 | 12.38683 | 20.79062 | 0.04899445 | 0.67801448 | ALASKA PLAICE | |
| 6 | 21720 | 16.36713 | 1.505 | 14.33341 | 18.40086 | 0.04833998 | 0.72635447 | PACIFIC COD | |
| 7 | 81742 | 12.95307 | 1.493 | 10.92745 | 14.97869 | 0.03825662 | 0.76461109 | PURPLE-ORANGE SEASTAR | |
| 8 | 10130 | 8.67099 | 0.552 | 7.43971 | 9.90227 | 0.02560960 | 0.79022068 | FLATHEAD SOLE | |
| 9 | 10110 | 5.05879 | 0.283 | 4.17657 | 5.94100 | 0.01494102 | 0.80516170 | ARROHTOOTH FLOUNDER | |
| 10 | 69086 | 4.01478 | 0.232 | 3.21626 | 4.81330 | 0.01185757 | 0.81701928 | FUZZY HERMIT CRAB | |
| 11 | 98082 | 3.82505 | 0.598 | 2.54354 | 5.10657 | 0.01129721 | 0.82831649 | SEA POTATO | |
| 12 | 00400 | 3.32470 | 0.163 | 2.65499 | 3.99441 | 0.00981943 | 0.83813592 | SKATE UNIDENT. | |
| 13 | 99994 | 3.22273 | 0.125 | 2.63632 | 3.80913 | 0.00951825 | 0.84765417 | EMPTY GASTROPOD SHELLS | |
| 14 | 71884 | 2.81222 | 0.118 | 2.24375 | 3.38068 | 0.00830582 | 0.85595999 | NEPTUNEA HEROS | |
| 15 | 21110 | 2.57995 | 5.132 | 0.00000 | 6.33542 | 0.00761982 | 0.86357981 | PACIFIC HERRING | |
| 16 | 10120 | 2.38954 | 0.044 | 2.04327 | 2.73580 | 0.00705744 | 0.87063726 | PACIFIC HALIBUT | |
| 17 | 00404 | 2.00103 | 0.357 | 1.01049 | 2.99158 | 0.00591001 | 0.87654727 | RAJA SP. | |
| 18 | 68560 | 1.85424 | 0.106 | 1.31386 | 2.39462 | 0.00547646 | 0.88202373 | BROAD SNOW CRAB (=TANNER CRAB(BAIRDI)) | |
| 19 | 00471 | 1.75081 | 0.118 | 1.18184 | 2.31979 | 0.00517099 | 0.88719472 | ALASKA SKATE (=FLATHEAD SKATE) | |
| 20 | 83020 | 1.46163 | 0.108 | 0.91611 | 2.00716 | 0.00431691 | 0.89151162 | GORGONOCEPHALUS CARY! | |
| 21 | 21348 | 1.45352 | 0.310 | 0.53043 | 2.37662 | 0.00429295 | 0.89580458 | BUTTERFLY SCULPIN | |
| 22 | 71882 | 1.21287 | 0.037 | 0.89597 | 1.52977 | 0.00358218 | 0.89938676 | FAT UHELK | N |
| 23 | 91050 | 1.16147 | 1.349 | 0.00000 | 3.08698 | 0.00343037 | 0.90281713 | BARREL SPONGE | \bigcirc |
| 24 | 21371 | 1.09485 | 0.023 | 0.84414 | 1.34555 | 0.00323361 | 0.90605074 | PLAIN SCULPIN | 6 |
| 25 | 71820 | 1.07784 | 0.026 | 0.81206 | 1.34361 | 0.00318337 | 0.90923411 | PRIBILOF WHELK | |
| 26 | 81780 | 1.03883 | 0.102 | 0.50894 | 1.56871 | 0.00306815 | 0.91230226 | COMMAN MUD STAR | |
| 27 | 10140 | 1.00850 | 0.016 | 0.79948 | 1.21752 | 0.00297859 | 0.91528085 | BERING FLOUNDER | |
| 28 | 83010 | 0.96955 | 0.084 | 0.48991 | 1.44919 | 0.00286355 | 0.91814440 | BASKEISTARFISH UNIDENT. | |
| 29 | 10115 | 0.90028 | 0.012 | 0.72244 | 1.07812 | 0.00265896 | 0.92080336 | GREENLAND TURBOT (=GREENLAND HALIBUT) | |
| 30 | 91000 | 0.88124 | 0.128 | 0.28732 | 1.47515 | 0.00260272 | 0.92340608 | SPONGE UNIDENT. | |
| 31 | 80590 | 0.87620 | 0.014 | 0.68217 | 1.07023 | 0.00258785 | 0.92599392 | Leptasterias polaris. | |
| 32 | 69322 | 0.86199 | 0.033 | 0.56045 | 1.16353 | 0.00254587 | 0.92853979 | RED KING CRAB | |
| 33 | 21230 | 0.84964 | 0.016 | 0.63745 | 1.06183 | 0.00250939 | 0.93104918 | GIANT GRENADIER | |
| 34 | 43000 | 0.83305 | 0.027 | 0.56013 | 1.10597 | 0.00246040 | 0.93350958 | SEA ANEMONE UNIDENT. | |
| 35 | 24184 | 0.79804 | 0.017 | 0.58099 | 1.01509 | 0.00235699 | 0.93586657 | MARBLED EELPOUT (PREV. SPARSE TOOTHED LYCOD) | |
| 36 | 98205 | 0.75880 | 0.054 | 0.37313 | 1.14448 | 0.00224111 | 0.93810768 | SEA PEACH | |
| 37 | 69060 | 0.71707 | 0.014 | 0.52291 | 0.91124 | 0.00211786 | 0.94022554 | ALEUTIAN HERMIT | |
| 38 | 71870 | 0.69153 | 0.015 | 0.48688 | 0.89617 | 0.00204241 | 0.94226795 | LYRE WHELK | |
| 39 | 21375 | 0.67952 | 0.018 | 0.45419 | 0.90485 | 0.00200695 | 0.94427491 | MYOXOCEPHALUS SP. | |
| 40 | 21725 | 0.66133 | 0.119 | 0.08867 | 1.23400 | 0.00195324 | 0.94622814 | ARCTIC COD | |
| 41 | 21735 | 0.64682 | 0.057 | 0.24980 | 1.04385 | 0.00191038 | 0.94813852 | SAFFRON COD | |
| 42 | 21370 | 0.63570 | 0.006 | 0.50375 | 0.76764 | 0.00187751 | 0.95001603 | GREAT SCULPIN | |
| 43 | 69120 | 0.62798 | 0.015 | 0.42478 | 0.83118 | 0.00185473 | 0.95187076 | HAIRY HERMIT CRAB | |
| 44 | 69095 | 0.62277 | 0.007 | 0.48282 | 0.76271 | 0.00183933 | 0.95371009 | LONGFINGER HERMIT | |
| 45 | 43020 | 0.61905 | 0.092 | 0.11692 | 1.12118 | 0.00182836 | 0.95553845 | METRIDIUM SENILE | |
| 46 | 99993 | 0.56926 | 0.018 | 0.34746 | 0.79105 | 0.00168129 | 0.95721974 | EMPTY BIVALVE SHELLS | |
| 47 | 69010 | 0.51941 | 0.052 | 0.14219 | 0.89663 | 0.00153408 | 0.95875381 | HERMIT CRAB UNIDENT. | |

Table C-3.--(Cont.).

| RANK | SPECIES | $\begin{aligned} & \text { MEAN CPUE } \\ & \text { (KG/HA) } \end{aligned}$ | VARIANCE | $\begin{array}{r} 90 \mathrm{~F} \\ \text { CONFID } \\ \hline \end{array}$ | $\begin{aligned} & \text { NT } \\ & \text { LIMITS } \end{aligned}$ | PROPORTION | CUMULATIVE PROPORTION | NAME |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 48 | 24185 | 0.49532 | 0.005 | 0.37987 | 0.61077 | 0.00146291 | 0.96021673 | WATTLED EELPOUT |
| 49 | 20510 | 0.48150 | 0.009 | 0.32005 | 0.64294 | 0.00142209 | 0.96163881 | SABLEFISH |
| 50 | 69090 | 0.47920 | 0.004 | 0.37767 | 0.58072 | 0.00141530 | 0.96305411 | PAGURUS OCHOTENSIS |
| 51 | 30060 | 0.46033 | 0.022 | 0.21372 | 0.70695 | 0.00135959 | 0.96441370 | PACIFIC OCEAN PERCH |
| 52 | 83320 | 0.45956 | 0.019 | 0.22911 | 0.69001 | 0.00135731 | 0.96577100 | OPHIURA SARSI |
| 53 | 40500 | 0.43211 | 0.005 | 0.31325 | 0.55096 | 0.00127622 | 0.96704722 | JELLYFISH UNIDENT. |
| 54 | 20040 | 0.39877 | 0.002 | 0.32699 | 0.47056 | 0.00117777 | 0.96822499 | STURGEON POACHER |
| 55 | 21347 | 0.38835 | 0.015 | 0.18642 | 0.59029 | 0.00114699 | 0.96937198 | YELLOW IRISH LORD |
| 56 | 68577 | 0.38366 | 0.005 | 0.26665 | 0.50068 | 0.00113314 | 0.97050512 | CIRCUMBOREAL TOAD CRAB (=hyas crab) |
| 57 | 10211 | 0.38301 | 0.004 | 0.27634 | 0.48968 | 0.00113122 | 0.97163633 | LONGHEAD DAB |
| 58 | 21420 | 0.37186 | 0.007 | 0.23065 | 0.51307 | 0.00109828 | 0.97273461 | BIGMOUTH SCULPIN |
| 59 | 69070 | 0.31055 | 0.002 | 0.22953 | 0.39157 | 0.00091721 | 0.97365182 | KNOBBYHAND HERMIT CRAB |
| 60 | 83000 | 0.29073 | 0.017 | 0.07157 | 0.50988 | 0.00085865 | 0.97451047 | BRITTLESTARFISH UNIDENT. |
| 61 | 10200 | 0.26759 | 0.001 | 0.20954 | 0.32563 | 0.00079032 | 0.97530079 | REX SOLE |
| 62 | 72500 | 0.25911 | 0.002 | 0.18381 | 0.33441 | 0.00076528 | 0.97606607 | OREGON TRITON |
| 63 | 72752 | 0.25443 | 0.002 | 0.17276 | 0.33610 | 0.00075145 | 0.97681752 | LADDER WHELK (PREV. SILKY WHELK) |
| 64 | 80020 | 0.24918 | 0.015 | 0.04645 | 0.45191 | 0.00073594 | 0.97755346 | EVASTERIAS ECHINOSOMA |
| 65 | 71001 | 0.24322 | 0.002 | 0.17423 | 0.31221 | 0.00071833 | 0.97827180 | SNAIL (GASTROPOD) EGGS |
| 66 | 41201 | 0.22720 | 0.007 | 0.08753 | 0.36688 | 0.00067104 | 0.97894283 | SEA RASPBERRY |
| 67 | 98310 | 0.22574 | 0.004 | 0.12685 | 0.32463 | 0.00066671 | 0.97960955 | APLIDIUM SP. |
| 68 | 80200 | 0.21496 | 0.002 | 0.14903 | 0.28089 | 0.00063488 | 0.98024443 | LETHASTERIAS NANIMENSIS |
| 69 | 10112 | 0.21281 | 0.002 | 0.13365 | 0.29197 | 0.00062852 | 0.98087296 | KAMCHATKA FLOUNDER |
| 70 | 85201 | 0.21117 | 0.019 | 0.00000 | 0.43748 | 0.00062370 | 0.98149666 | cucumaria fallax |
| 71 | 98105 | 0.19604 | 0.005 | 0.08234 | 0.30975 | 0.00057901 | 0.98207567 | boltenia OVIfera |
| 72 | 10220 | 0.19074 | 0.002 | 0.11340 | 0.26808 | 0.00056335 | 0.98263902 | STARRY FLOUNDER |
| 73 74 | 20720 | 0.18075 | 0.009 | 0.02221 | 0.33928 | 0.00053383 | 0.98317285 | SEARCHER |
| 74 75 | 71753 98100 | 0.17664 0.17305 | 0.009 | 0.01652 | 0.33677 | 0.00052172 | 0.98369456 | WARPED WHELK |
| 75 76 | 98100 | 0.17305 | 0.003 | 0.08212 | 0.26398 | 0.00051110 | 0.98420566 | SEA ONION UNIDENT. |
| 76 | 68590 | 0.17218 | 0.002 | 0.09979 | 0.24456 | 0.00050852 | 0.98471418 | TANNER CRAB (HYBRID) |
| 77 78 | 69061 | 0.16560 0.15069 | 0.000 0.000 | 0.13025 0.12004 | 0.20095 | 0.00048910 | 0.98520328 | LABIDOCHIRUS SPLENDESCENS (=PAGURUS SP.) |
| 78 | 22200 72743 | 0.15069 0.14816 | 0.000 0.001 | 0.12004 0.11051 | 0.18133 0.18580 | 0.00044505 | 0.98564832 | SNAILFISH UNIDENT. |
| 80 | 72755 | 0.13878 | 0.000 | 0.10532 | 0.17224 | 0.00040989 | 0.98649579 | POLAR WHELK |
| 81 | 71756 | 0.13298 | 0.002 | 0.05036 | 0.21560 | 0.00039275 | 0.98688854 | FRAGILE WHELK |
| 82 | 72751 | 0.12108 | 0.001 | 0.07687 | 0.16529 | 0.00035762 | 0.98724616 | SINUOUS WHELK (PREV. LYRE WHELK) |
| 83 | 24191 | 0.11776 | 0.001 | 0.07955 | 0.15598 | 0.00034781 | 0.98759397 | SHORTFIN EELPOUT |
| 84 | 71835 | 0.11710 | 0.003 | 0.02657 | 0.20763 | 0.00034585 | 0.98793982 | NEPTUNEA BOREALIS |
| 85 | 00472 | 0.11475 | 0.005 | 0.00000 | 0.23014 | 0.00033891 | 0.98827873 | ALEUTIAN SKATE |
| 86 | 30420 | 0.10969 | 0.012 | 0.00000 | 0.28878 | 0.00032395 | 0.98860268 | NORTHERN ROCKFISH |
| 87 | 00435 | 0.09978 | 0.001 | 0.03684 | 0.16272 | 0.00029470 | 0.98889738 | BERING SKATE (=SANDPAPER SKATE) |
| 88 89 | 21220 | 0.09768 | 0.001 | 0.04333 | 0.15203 | 0.00028849 | 0.98918588 | PACIFIC GRENADIER |
| 89 | 68578 | 0.09011 | 0.000 | 0.05579 | 0.12442 | 0.00026612 | 0.98945200 | NORTH PACIFIC TOAD CRAB (=HYAS CRAB) |
| 90 | 78403 | 0.08936 | 0.001 | 0.02654 | 0.15219 | 0.00026394 | 0.98971594 | GIANT OCTOPUS |
| 91 | 80594 | 0.08838 | 0.001 | 0.04108 | 0.13569 | 0.00026104 | 0.98997698 | LePTASTERIAS arctica |
| 92 | 23041 | 0.08827 | 0.000 | 0.05978 | 0.11676 | 0.00026069 | 0.99023767 | CAPELIN |
| 93 | 82730 | 0.08709 | 0.002 | 0.01291 | 0.16126 | 0.00025721 | 0.99049488 | SAND DOLLAR UNIDENT. |
| 94 | 69323 | 0.08653 | 0.000 | 0.05858 | 0.11447 | 0.00025555 | 0.99075043 | blUE KING CRAB |

| RANK | SPECIES | MEAN CPUE (KG/HA) | VARIANCE | 90 PERCENT | | | CUMULATIVE | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 95 | 30020 | 0.08131 | 0.001 | 0.02438 | 0.13825 | PROPORTION | PROPORTION | NAME |
| 96 | 78010 | 0.07632 | 0.001 | 0.03458 | 0.11805 | 0.00022541 | 0.99121600 | SHORTSPINE THORNYHEAD |
| 97 | 69520 | 0.07590 | 0.000 | 0.04181 | 0.10999 | 0.00022416 | 0.99144016 | HYAS SP. |
| 98 | 69121 | 0.06553 | 0.000 | 0.03628 | 0.09479 | 0.00019355 | 0.99163372 | ELASSOCHIRUS CAVIMANUS |
| 99 | 65201 | 0.06499 | 0.002 | 0.00000 | 0.14418 | 0.00019194 | 0.99182566 | BALANUS SP. |
| 100 | 66000 | 0.06386 | 0.000 | 0.04206 | 0.08566 | 0.00018862 | 0.99201427 | SHRIMP UNIDENT. |
| 101 | 21316 | 0.06075 | 0.001 | 0.01876 | 0.10275 | 0.00017944 | 0.99219371 | ARMORHEAD SCULPIN |
| 102 | 72740 | 0.06033 | 0.000 | 0.02453 | 0.09614 | 0.00017820 | 0.99237191 | BUCCINUM SP. |
| 103 | 00232 | 0.05968 | 0.004 | 0.00000 | 0.15861 | 0.00017626 | 0.99254817 | SALMON SHARK |
| 104 | 21368 | 0.05944 | 0.000 | 0.03224 | 0.08665 | 0.00017557 | 0.99272373 | WARTY SCULPIN (=SHORTHORNED SCULPIN) |
| 105 | 71750 | 0.05891 | 0.001 | 0.00000 | 0.11794 | 0.00017400 | 0.99289773 | VOLUTOPSIUS SP. (=PYRULOFUSUS SP.) |
| 106 | 74562 | 0.05683 | 0.000 | 0.02912 | 0.08454 | 0.00016784 | 0.99306557 | DISCORDANT MUSSEL |
| 107 | 66031 | 0.05516 | 0.000 | 0.03886 | 0.07146 | 0.00016292 | 0.99322849 | NORTHERN SHRIMP (=PINK SHRIMP) |
| 108 | 98300 | 0.05449 | 0.000 | 0.02190 | 0.08707 | 0.00016092 | 0.99338941 | COMPOUND ASCIDIAN UNIDENT. |
| 109 | 65203 | 0.05429 | 0.001 | 0.00000 | 0.11376 | 0.00016034 | 0.99354975 | GIANT BARNACLE |
| 110 | 68781 | 0.05361 | 0.000 | 0.02838 | 0.07883 | 0.00015832 | 0.99370808 | telmessus crab |
| 111 | 82740 | 0.05313 | 0.002 | 0.00000 | 0.12679 | 0.00015692 | 0.99386500 | Parma sand dollar |
| 112 | 95000 | 0.05208 | 0.001 | 0.01327 | 0.09089 | 0.00015382 | 0.99401882 | BRYOZOAN UNIDENT. |
| 113 | 82510 | 0.05113 | 0.000 | 0.02844 | 0.07382 | 0.00015101 | 0.99416983 | GREEN SEA URCHIN |
| 114 | 24001 | 0.04709 | 0.000 | 0.01504 | 0.07914 | 0.00013908 | 0.99430891 | PROWFISH |
| 115 | 24110 | 0.04479 | 0.000 | 0.02072 | 0.06887 | 0.00013230 | 0.99444120 | TWOLINE EELPOUT |
| 116 | 71759 | 0.04398 | 0.001 | 0.00000 | 0.08923 | 0.00012990 | 0.99457110 | THREADED WHELK |
| 117 | 43010 | 0.04337 | 0.000 | 0.00804 | 0.07871 | 0.00012810 | 0.99469921 | METRIDIUM SP. |
| 118 | 71500 | 0.04333 | 0.000 | 0.02248 | 0.06418 | 0.00012797 | 0.99482718 | SNAIL UNIDENT. |
| 119 | 22201 | 0.04067 | 0.000 | 0.02450 | 0.05684 | 0.00012012 | 0.99494730 | LIPARIS SP. |
| 120 | 81355 | 0.03945 | 0.000 | 0.00305 | 0.07585 | 0.00011652 | 0.99506382 | PTERASTER ObScurus |
| 121 | 71721 | 0.03852 | 0.001 | 0.00000 | 0.08045 | 0.00011377 | 0.99517759 | THIN-RIBBED WHELK |
| 122 | 00420 | 0.03811 | 0.001 | 0.00000 | 0.08279 | 0.00011255 | 0.99529014 | big skate |
| 123 | 21313 | 0.03782 | 0.000 | 0.02034 | 0.05530 | 0.00011171 | 0.99540185 | GYMNOCANTHUS SP. |
| 124 | 71772 | 0.03729 | 0.000 | 0.02452 | 0.05005 | 0.00011012 | 0.99551197 | BERINGIUS BERINGII |
| 125 | 68510 | 0.03713 | 0.000 | 0.00894 | 0.06532 | 0.00010966 | 0.99562163 | LONGHORNED DECORATOR CRAB (=DECORATOR CRAB) |
| 126 | 23055 | 0.03676 | 0.000 | 0.01732 | 0.05620 | 0.00010857 | 0.99573021 | RAINBOW SMELT |
| 127 | 71961 | 0.03666 | 0.000 | 0.02278 | 0.05054 | 0.00010827 | 0.99583848 | CLINOPEGMA MAGMA |
| 128 | 56311 | 0.03487 | 0.001 | 0.00000 | 0.07900 | 0.00010299 | 0.99594146 | GIANT SCALE WORM |
| 129 | 10212 | 0.03479 | 0.000 | 0.01766 | 0.05192 | 0.00010275 | 0.99604422 | SAKHALIN SOLE |
| 130 | 98000 | 0.03336 | 0.000 | 0.00739 | 0.05933 | 0.00009854 | 0.99614275 | TUNICATE UNIDENT. |
| 131 | 41221 | 0.03291 | 0.000 | 0.00713 | 0.05869 | 0.00009720 | 0.99623995 | gersemia rubiformis (=EUNEPHTHYA RUBIFORMIS) |
| 132 | 10270 | 0.03248 | 0.000 | 0.00700 | 0.05796 | 0.00009593 | 0.99633588 | BUTTER SOLE |
| 133 | 81779 | 0.03215 | 0.001 | 0.00000 | 0.08291 | 0.00009497 | 0.99643085 | CTENDOISCUS SP. |
| 134 | 50160 | 0.03209 | 0.000 | 0.01120 | 0.05298 | 0.00009478 | 0.99652563 | SEA MOUSE UNIDENT. |
| 135 | 21438 | 0.02918 | 0.000 | 0.01971 | 0.03865 | 0.00008619 | 0.99661181 | THORNY SCULPIN |
| 136 | 00320 | 0.02896 | 0.000 | 0.01207 | 0.04585 | 0.00008553 | 0.99669735 | PACIFIC SLEEPER SHARK |
| 137 | 71764 | 0.02831 | 0.000 | 0.00782 | 0.04880 | 0.00008362 | 0.99678097 | TULIP WHELK |
| 138 | 79210 | 0.02815 | 0.000 | 0.02115 | 0.03515 | 0.00008313 | 0.99686410 | MAGISTRATE ARMHOOK SQUID (PREV. RED SQUID) |
| 139 | 99999 | 0.02772 | 0.000 | 0.00472 | 0.05073 | 0.00008189 | 0.99694598 | UNSORTED SHAB |
| 140 | 75610 | 0.02751 | 0.001 | 0.00000 | 0.06721 | 0.00008126 | 0.99702724 | FALSEJINGLES UNIDENT. (PREV. ROCK JINGLES) |
| 141 | 23010 | 0.02644 | 0.000 | 0.00742 | 0.04546 | 0.00007809 | 0.99710534 | EULACHON |

Table C-3.--(Cont.).

| RANK | SPECIES | $\begin{gathered} \text { MEAN CPUE } \\ \text { (KG/HA) } \end{gathered}$ | VARIANCE | 90 PERCENTCONFIDENCE LIMITS | | PROPORTION | $\begin{aligned} & \text { CUMULATIVE } \\ & \text { PROPORTION } \\ & \hline \end{aligned}$ | NAME | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 142 | 50000 | 0.02625 | 0.001 | 0.00000 | 0.06411 | 0.00007753 | 0.99718287 | POLYCHAETE WORM UNIDENT. | |
| 143 | 21341 | 0.02528 | 0.000 | 0.01312 | 0.03745 | 0.00007467 | 0.99725754 | DARKFIN SCULPIN | |
| 144 | 99990 | 0.02496 | 0.000 | 0.00000 | 0.06064 | 0.00007372 | 0.99733127 | INVERTEBRATE UNIDENT. | |
| 145 | 82526 | 0.02443 | 0.000 | 0.00000 | 0.06022 | 0.00007215 | 0.99740341 | WHITE SEA URCHIN | |
| 146 | 80110 | 0.02404 | 0.000 | 0.00541 | 0.04268 | 0.00007102 | 0.99747443 | LEPTASTERIAS GROENLANDICA | |
| 147 | 21360 | 0.02304 | 0.000 | 0.00000 | 0.04965 | 0.00006805 | 0.99754248 | BRIGHTBELLY SCULPIN | |
| 148 | 69400 | 0.02221 | 0.000 | 0.01025 | 0.03416 | 0.00006560 | 0.99760807 | HORSEHAIR CRAB | |
| 149 | 71763 | 0.02161 | 0.000 | 0.00000 | 0.04343 | 0.00006383 | 0.99767191 | SHOULDERED WHELK | |
| 150 | 72063 | 0.01944 | 0.000 | 0.01084 | 0.02804 | 0.00005742 | 0.99772932 | KEELED AFORIA | |
| 151 | 71010 | 0.01925 | 0.000 | 0.01124 | 0.02727 | 0.00005686 | 0.99778618 | NUDIBRANCH UNIDENT. | |
| 152 | 10250 | 0.01887 | 0.000 | 0.00000 | 0.05016 | 0.00005574 | 0.99784192 | SAND SOLE | |
| 153 | 71891 | 0.01830 | 0.000 | 0.01282 | 0.02379 | 0.00005406 | 0.99789598 | PLICIFUSUS KROYERI | |
| 154 | 71580 | 0.01827 | 0.000 | 0.01168 | 0.02486 | 0.00005397 | 0.99794995 | PALE MOONSNAIL | |
| 155 | 71525 | 0.01715 | 0.000 | 0.00870 | 0.02561 | 0.00005066 | 0.99800061 | NATICA SP. | |
| 156 | 75285 | 0.01632 | 0.000 | 0.00382 | 0.02882 | 0.00004820 | 0.99804882 | GREENLAND COCKLE | |
| 157 | 65100 | 0.01614 | 0.000 | 0.00091 | 0.03137 | 0.00004766 | 0.99809648 | BARNACLE UNIDENT. | |
| 158 | 91700 | 0.01577 | 0.000 | 0.00000 | 0.04114 | 0.00004656 | 0.99814304 | GLASS SPONGE UNIDENT. | |
| 159 | 21390 | 0.01557 | 0.000 | 0.00880 | 0.02235 | 0.00004599 | 0.99818903 | SPINYHEAD SCULPIN | |
| 160 | 85200 | 0.01530 | 0.000 | 0.00155 | 0.02905 | 0.00004519 | 0.99823422 | CUCUMARIA SP. | |
| 161 | 30576 | 0.01526 | 0.000 | 0.00397 | 0.02655 | 0.00004506 | 0.99827928 | SHORTRAKER ROCKFISH | |
| 162 | 41100 | 0.01479 | 0.000 | 0.00489 | 0.02468 | 0.00004368 | 0.99832296 | SOFT CORAL UNIDENT. | |
| 163 | 82500 | 0.01469 | 0.000 | 0.00000 | 0.03183 | 0.00004339 | 0.99836635 | SEA URCHIN UNIDENT. | |
| 164 | 30040 | 0.01438 | 0.000 | 0.00636 | 0.02239 | 0.00004246 | 0.99840881 | ROCKFISH UNIDENT. | |
| 165 | 85000 | 0.01360 | 0.000 | 0.00549 | 0.02170 | 0.00004016 | 0.99844896 | SEA CUCUMBER UNIDENT. | |
| 166 | 43040 | 0.01280 | 0.000 | 0.00651 | 0.01909 | 0.00003781 | 0.99848677 | TEALIA SP. | |
| 167 | 21210 | 0.01263 | 0.000 | 0.00000 | 0.02838 | 0.00003730 | 0.99852407 | CORYPHAENOIDES SP. | |
| 168 | 24189 | 0.01218 | 0.000 | 0.00031 | 0.02405 | 0.00003598 | 0.99856005 | POLAR EELPOUT | |
| 169 | 80000 | 0.01203 | 0.000 | 0.00215 | 0.02190 | 0.00003552 | 0.99859556 | STARFISH UNIDENT. | |
| 170 | 71760 | 0.01193 | 0.000 | 0.00000 | 0.02757 | 0.00003523 | 0.99863080 | VOLUTE WHELK | |
| 171 | 20322 | 0.01188 | 0.000 | 0.00000 | 0.02503 | 0.00003508 | 0.99866588 | BERING WOLFFISH | |
| 172 | 00450 | 0.01173 | 0.000 | 0.00000 | 0.02974 | 0.00003465 | 0.99870053 | STARRY SKATE | |
| 173 | 30050 | 0.01084 | 0.000 | 0.00486 | 0.01681 | 0.00003200 | 0.99873253 | ROUGHEYE ROCKFISH | |
| 174 | 21355 | 0.01037 | 0.000 | 0.00440 | 0.01634 | 0.00003062 | 0.99876316 | RIBBED SCULPIN | |
| 175 | 22219 | 0.00996 | 0.000 | 0.00000 | 0.02093 | 0.00002942 | 0.99879257 | CAREPROCTUS SP. | |
| 176 | 91040 | 0.00986 | 0.000 | 0.00000 | 0.02619 | 0.00002911 | 0.99882168 | TREE SPONGE | |
| 177 | 75111 | 0.00969 | 0.000 | 0.00340 | 0.01597 | 0.00002861 | 0.99885029 | ARCTIC SURFCLAM (PREV. ALASKA | SURF CLAM) |
| 178 | 21377 | 0.00966 | 0.000 | 0.00000 | 0.02152 | 0.00002853 | 0.99887882 | FOURHORN SCULPIN | |
| 179 | 24187 | 0.00947 | 0.000 | 0.00437 | 0.01457 | 0.00002797 | 0.99890680 | EBONY EELPOUT (PREV. MARBLED | EELPOUT) |
| 180 | 94000 | 0.00943 | 0.000 | 0.00144 | 0.01742 | 0.00002785 | 0.99893465 | SIPUNCULID WORM UNIDENT. | |
| 181 | 23836 | 0.00916 | 0.000 | 0.00496 | 0.01336 | 0.00002706 | 0.99896171 | LONGSNOUT PRICKLEBACK | |
| 182 | 81310 | 0.00873 | 0.000 | 0.00399 | 0.01346 | 0.00002577 | 0.99898748 | PTERASTER SP. | |
| 183 | 21446 | 0.00871 | 0.000 | 0.00452 | 0.01290 | 0.00002572 | 0.99901320 | ICELUS SP. | |
| 184 | 69110 | 0.00848 | 0.000 | 0.00058 | 0.01639 | 0.00002506 | 0.99903825 | WIDEHAND HERHIT CRAB | |
| 185 | 71800 | 0.00816 | 0.000 | 0.00000 | 0.02094 | 0.00002409 | 0.99906234 | NEPTUNEA SP. | |
| 186 | 42000 | 0.00754 | 0.000 | 0.00042 | 0.01467 | 0.00002228 | 0.99908462 | SEA PEN UNIDENT. | |
| 187 | 20061 | 0.00742 | 0.000 | 0.00406 | 0.01078 | 0.00002192 | 0.99910654 | BERING POACHER | |
| 188 | 21932 | 0.00706 | 0.000 | 0.00272 | 0.01139 | 0.00002084 | 0.99912738 | WHITESPOTTED GREENLING | |

Table C-3.-- (Cont.)

| RANK | SPECIES | MEAN CPUE (KG/HA) | VARIANCE | $\begin{array}{r} 90 \mathrm{P} \\ \text { CONFIDE } \end{array}$ | IMITS | PROPORTION | CUMULATIVE PROPORTION | NAME |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 189 | 71769 | 0.00699 | 0.000 | 0.00000 | 0.01496 | 0.00002063 | 0.99914801 | BERINGIUS SP. |
| 190 | 74311 | 0.00654 | 0.000 | 0.00179 | 0.01129 | 0.00001931 | 0.99916732 | ARCTIC HIATELLA |
| 191 | 71537 | 0.00643 | 0.000 | 0.00198 | 0.01088 | 0.00001899 | 0.99918631 | RUSTY MOONSNAIL |
| 192 | 81360 | 0.00622 | 0.000 | 0.00003 | 0.01241 | 0.00001837 | 0.99920468 | DIPLOPTERASTER MULTIPES |
| 193 | 69035 | 0.00616 | 0.000 | 0.00000 | 0.01638 | 0.00001820 | 0.99922288 | PAGURUS SP. |
| 194 | 24190 | 0.00607 | 0.000 | 0.00318 | 0.00897 | 0.00001794 | 0.99924082 | BLACK EELPOUT |
| 195 | 21314 | 0.00597 | 0.000 | 0.00000 | 0.01216 | 0.00001762 | 0.99925844 | THREADED SCULPIN |
| 196 | 66611 | 0.00590 | 0.000 | 0.00389 | 0.00792 | 0.00001743 | 0.99927588 | NORTHERN ARGID |
| 197 | 68550 | 0.00590 | 0.000 | 0.00210 | 0.00969 | 0.00001741 | 0.99929329 | TRUE TANNER CRAB |
| 198 | 66045 | 0.00580 | 0.000 | 0.00294 | 0.00866 | 0.00001712 | 0.99931041 | HUMPY SHRIMP |
| 199 | 79200 | 0.00551 | 0.000 | 0.00218 | 0.00885 | 0.00001628 | 0.99932670 | GONATUS SP. |
| 200 | 72501 | 0.00546 | 0.000 | 0.00000 | 0.01323 | 0.00001613 | 0.99934282 | FUSITRITON SP. |
| 201 | 80015 | 0.00534 | 0.000 | 0.00000 | 0.01401 | 0.00001577 | 0.99935860 | EVASTERIAS TROSCHELII |
| 202 | 81095 | 0.00531 | 0.000 | 0.00210 | 0.00852 | 0.00001569 | 0.99937429 | ROSE SEA STAR |
| 203 | 75110 | 0.00516 | 0.000 | 0.00124 | 0.00908 | 0.00001523 | 0.99938952 | MACTROMERIS SP. (=SPISULA SP.) |
| 204 | 24186 | 0.00493 | 0.000 | 0.00000 | 0.01305 | 0.00001457 | 0.99940409 | SADDLED EELPOUT |
| 205 | 66530 | 0.00483 | 0.000 | 0.00312 | 0.00654 | 0.00001427 | 0.99941837 | RIDGED CRANGON |
| 206 | 98200 | 0.00439 | 0.000 | 0.00000 | 0.01036 | 0.00001295 | 0.99943132 | SEA PEACH UNIDENT. |
| 207 | 68040 | 0.00421 | 0.000 | 0.00174 | 0.00669 | 0.00001245 | 0.99944377 | OREGON ROCK CRAB |
| 208 | 71681 | 0.00421 | 0.000 | 0.00058 | 0.00784 | 0.00001244 | 0.99945621 | GREAT SLIPPERSNAIL |
| 209 | 95030 | 0.00420 | 0.000 | 0.00000 | 0.00880 | 0.00001240 | 0.99946861 | LEAFY BRYOZOAN |
| 210 | 75600 | 0.00405 | 0.000 | 0.00000 | 0.01077 | 0.00001197 | 0.99948058 | ALASKA FALSEJINGLE (PREV. ROCK JINGLE) |
| 211 | 00310 | 0.00390 | 0.000 | 0.00000 | 0.01036 | 0.00001151 | 0.99949209 | SPINY DOGFISH |
| 212 | 23235 | 0.00383 | 0.000 | 0.00000 | 0.00816 | 0.00001132 | 0.99950341 | CHUM SALMON |
| 213 | 20035 | 0.00382 | 0.000 | 0.00186 | 0.00577 | 0.00001127 | 0.99951468 | gray Starsnout |
| 214 | 20006 | 0.00373 | 0.000 | 0.00191 | 0.00554 | 0.00001101 | 0.99952569 | SAWBACK POACHER |
| 215 | 71761 | 0.00371 | 0.000 | 0.00055 | 0.00687 | 0.00001096 | 0.99953665 | VOLUTOPSIUS MELONIS (=PYRULOFUSUS MELONIS) |
| 216 | 75281 | 0.00358 | 0.000 | 0.00108 | 0.00608 | 0.00001058 | 0.99954723 | CLINOCARDIUM SP. |
| 217 | 21315 | 0.00357 | 0.000 | 0.00000 | 0.00781 | 0.00001056 | 0.99955778 | ARCTIC STAGHORN SCULPIN |
| 218 | 71530 | 0.00343 | 0.000 | 0.00038 | 0.00648 | 0.00001014 | 0.99956792 | ARCTIC MOONSNAIL |
| 219 | 71726 | 0.00336 | 0.000 | 0.00124 | 0.00549 | 0.00000993 | 0.99957786 | THICK-RIBBED WHELK |
| 220 | 80010 | 0.00330 | 0.000 | 0.00000 | 0.00878 | 0.00000976 | 0.99958761 | EVASTERIAS SP. |
| 221 | 66502 | 0.00328 | 0.000 | 0.00207 | 0.00449 | 0.00000969 | 0.99959730 | CRANGON SP. |
| 222 | 68570 | 0.00328 | 0.000 | 0.00161 | 0.00495 | 0.00000968 | 0.99960698 | CHIONOECETES ANGULATUS |
| 223 | 23808 | 0.00314 | 0.000 | 0.00154 | 0.00474 | 0.00000927 | 0.99961626 | SNAKE PRICKLEBACK |
| 224 | 75241 | 0.00313 | 0.000 | 0.00092 | 0.00534 | 0.00000924 | 0.99962550 | BENT-NOSE MACOMA (PREV. COMMON MACOMA) |
| 225 | 74120 | 0.00306 | 0.000 | 0.00000 | 0.00702 | 0.00000903 | 0.99963453 | WEATHERVANE SCALLOP |
| 226 | 22226 | 0.00302 | 0.000 | 0.00000 | 0.00642 | 0.00000892 | 0.99964344 | MONSTER SNAILFISH |
| 227 | 56312 | 0.00296 | 0.000 | 0.00007 | 0.00584 | 0.00000873 | 0.99965217 | DEPRESSED SCALE HORM |
| 228 | 99904 | 0.00273 | 0.000 | 0.00000 | 0.00705 | 0.00000807 | 0.99966024 | SEA CLOD |
| 229 | 69310 | 0.00272 | 0.000 | 0.00052 | 0.00491 | 0.00000802 | 0.99966826 | GOLDEN KING CRAB |
| 230 | 80595 | 0.00266 | 0.000 | 0.00012 | 0.00520 | 0.00000785 | 0.99967611 | LEPTASTERIAS SP. |
| 231 | 00480 | 0.00235 | 0.000 | 0.00001 | 0.00469 | 0.00000695 | 0.99968306 | WHITEBLOTCHED SKATE |
| 232 | 66120 | 0.00234 | 0.000 | 0.00148 | 0.00320 | 0.00000691 | 0.99968997 | SIDESTRIPE SHRIMP |
| 233 | 22232 | 0.00227 | 0.000 | 0.00036 | 0.00418 | 0.00000671 | 0.99969668 | PEACHSKIN SNAILFISH (=SCOTT'S SNAILFISH) |
| 234 | 80729 | 0.00227 | 0.000 | 0.00026 | 0.00428 | 0.00000670 | 0.99970338 | RED BAT STAR |
| 235 | 71640 | 0.00227 | 0.000 | 0.00000 | 0.00594 | 0.00000670 | 0.99971008 | SLIPPER SHELL |

Table C-3.--(Cont.).

| RANK | SPECIES | MEAN CPUE (KG/HA) | VARIANCE | 90 PERCENT | | Cumulative | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 236 | 22175 | 0.00226 | 0.000 | Cowrlo | Limits | PROPORTION | PROPORTION | NAME |
| 237 | 10001 | 0.00223 | 0.000 | 0.00115 | 0.00336 | 0.00000667 | 0.99971675 | SMOOTH LUMPSUCKER |
| 238 | 74561 | 0.00223 | 0.000 | 0.00000 | 0.00456 | 0.00000658 | 0.99972333 | FLATFISH UNIDENT. |
| 239 | 21354 | 0.00220 | 0.000 | 0.00000 | 0.00500 | 0.00000658 | 0.99972991 | BLACK MUSSEL |
| 240 | 72420 | 0.00216 | 0.000 | 0.00000 | 0.00527 | 0.00000638 | 0.99973642 | SPECTACLED SCULPIN |
| 241 | 71722 | 0.00209 | 0.000 | 0.00072 | 0.00347 | 0.00000618 | 0.99974898 | BOREOTROPHON SP. (FORMERLY TROPHONOPSIS SP.) OBLIOUE WHELK |
| 242 | 74439 | 0.00209 | 0.000 | 0.00000 | 0.00447 | 0.00000616 | 0.99975514 | TRENCHED NUTCLAM |
| 243 | 74104 | 0.00208 | 0.000 | 0.00000 | 0.00501 | 0.00000615 | 0.99976129 | CHLAMYS SP. |
| 244 | 74655 | 0.00205 | 0.000 | 0.00000 | 0.00451 | 0.00000605 | 0.99976734 | MANY-RIB CYCLOCARDIA |
| 245 | 23657 | 0.00203 | 0.000 | 0.00000 | 0.00498 | 0.0000059 | 0.99977334 | LONGNOSE LANCETFISH |
| 246 | 00001 | 0.00199 | 0.000 | 0.00000 | 0.00516 | 0.00000588 | 0.99977922 | FISH EGGS UNIDENT. |
| 247 | 56310 | 0.00195 | 0.000 | 0.00094 | 0.00296 | 0.00000576 | 0.99978498 | EUNOE SP. |
| 248 | 81315 | 0.00192 | 0.000 | 0.00000 | 0.00396 | 0.00000568 | 0.99979066 | PYERASTER TESSELATUS |
| 249 | 71710 | 0.00188 | 0.000 | 0.00000 | 0.00387 | 0.00000554 | 0.99979621 | COLUS SP. |
| 250 | 71731 | 0.00185 | 0.000 | 0.00068 | 0.00302 | 0.00000547 | 0.99980167 | COLUS HALLI |
| 251 | 21350 | 0.00178 | 0.000 | 0.00004 | 0.00352 | 0.00000527 | 0.99980694 | TRIGLOPS SP. |
| 252 | 21592 | 0.00174 | 0.000 | 0.00007 | 0.00341 | 0.00000514 | 0.99981208 | PACIFIC SANDFISH |
| 253 | 79020 | 0.00169 | 0.000 | 0.00012 | 0.00326 | 0.00000498 | 0.99981706 | ROSSIA PACIFICA |
| 254 | 23805 | 0.00162 | 0.000 | 0.00084 | 0.00241 | 0.00000480 | 0.99982186 | DAUBED SHANNY |
| 255 | 75286 | 0.00160 | 0.000 | 0.00000 | 0.00411 | 0.00000471 | 0.99982657 | BROAD COCKLE |
| 256 | 80660 | 0.00158 | 0.000 | 0.00000 | 0.00342 | 0.00000467 | 0.99983124 | PSEUDARCHASTER PARELII |
| 257 | 66580 | 0.00152 | 0.000 | 0.00066 | 0.00238 | 0.00000449 | 0.99983573 | ARCTIC ARGID |
| 258 | 71892 | 0.00151 | 0.000 | 0.00000 | 0.00307 | 0.00000446 | 0.99984019 | PLICIfUSUS INCISUS |
| 259 | 65205 | 0.00146 | 0.000 | 0.00000 | 0.00360 | 0.00000431 | 0.99984450 | BEAKED BARNACLE |
| 260 | 66570 | 0.00139 | 0.000 | 0.00067 | 0.00211 | 0.00000412 | 0.99984862 | ARGIS SP. |
| 261 | 71260 | 0.00139 | 0.000 | 0.00000 | 0.00369 | 0.00000410 | 0.99985272 | WHITE NIGHT DORIS (PREV. SNOU WHITE DORIS) |
| 262 | 75284 | 0.00139 | 0.000 | 0.00025 | 0.00253 | 0.00000410 | 0.99985682 | SERRIPES SP. |
| 263 | 00460 | 0.00139 | 0.000 | 0.00036 | 0.00241 | 0.00000410 | 0.99986092 | BLACK SKATE (PREV. ROUGHTAIL SKATE) |
| 264 | 72805 | 0.00138 | 0.000 | 0.00000 | 0.00337 | 0.00000407 | 0.99986499 | SMOOTH LAMELLARIA |
| 265 | 24100 | 0.00136 | 0.000 | 0.00000 | 0.00309 | 0.00000403 | 0.99986902 | EELPOUT UNIDENT. |
| 266 | 10180 | 0.00133 | 0.000 | 0.00064 | 0.00202 | 0.00000393 | 0.99987295 | DOVER SOLE |
| 267 | 74106 | 0.00132 | 0.000 | 0.00000 | 0.00270 | 0.00000391 | 0.99987685 | CHLAMYS RUBIDA |
| 268 | 21935 | 0.00130 | 0.000 | 0.00000 | 0.00345 | 0.00000383 | 0.99988068 | KELP GREENLING |
| 269 | 85210 | 0.00130 | 0.000 | 0.00000 | 0.00303 | 0.00000383 | 0.99988451 | PSOLUS SP. |
| 270 | 30240 | 0.00127 | 0.000 | 0.00000 | 0.00339 | 0.00000376 | 0.99988827 | YELLOWTAIL ROCKFISH |
| 271 | 21340 | 0.00126 | 0.000 | 0.00047 | 0.00205 | 0.00000372 | 0.99989199 | BLACKFIN SCULPIN |
| 272 | 21352 | 0.00125 | 0.000 | 0.00000 | 0.00329 | 0.00000369 | 0.99989568 | SCISSORTAIL SCULPIN |
| 273 | 69042 | 0.00116 | 0.000 | 0.00000 | 0.00309 | 0.00000344 | 0.99989912 | SPONGE HERMIT CRAB |
| 274 | 72758 | 0.00108 | 0.000 | 0.00000 | 0.00236 | 0.00000318 | 0.99990230 | GLACIAL WHELK |
| 275 | 80540 | 0.00107 | 0.000 | 0.00055 | 0.00159 | 0.00000316 | 0.99990546 | HENRICIA SP. |
| 276 | 23240 | 0.00104 | 0.000 | 0.00001 | 0.00207 | 0.00000307 | 0.99990853 | SOCKEYE SALMON |
| 277 | 24180 | 0.00103 | 0.000 | 0.00000 | 0.00274 | 0.00000305 | 0.99991158 | LYCODES SP. |
| 278 | 23809 | 0.00098 | 0.000 | 0.00000 | 0.00212 | 0.00000288 | 0.99991446 | PIGHEAD PRICKLEBACK |
| 279 | 74983 | 0.00095 | 0.000 | 0.00013 | 0.00178 | 0.00000282 | 0.99991728 | HAIRY COCKLE |
| 280 | 22600 | 0.00090 | 0.000 | 0.00037 | 0.00143 | 0.00000266 | 0.99991994 | LANTERNFISH UNIDENT. |
| 281 | 75267 | 0.00089 | 0.000 | 0.00021 | 0.00157 | 0.00000263 | 0.99992257 | ALASKA RAZOR (PREV. NORTHERN RAZOR CLAM) |
| 282 | 21731 | 0.00088 | 0.000 | 0.00056 | 0.00121 | 0.00000261 | 0.99992518 | PACIFIC FLATNOSE |

Table C- 3.-- (Cont.).

| RANK | SPECIES | $\begin{aligned} & \text { MEAN CPUE } \\ & \text { (KG/HA) } \end{aligned}$ | VARIANCE | $\begin{array}{r} 90 \mathrm{PE} \\ \text { CONFIDE } \end{array}$ | NT
 LIMITS | PROPORTION | CUMULATIVE PROPORTION | NAME |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 283 | 20050 | 0.00088 | 0.000 | 0.00041 | 0.00135 | 0.00000260 | 0.99992778 | ALEUTIAN ALLIGATORFISH |
| 284 | 71012 | 0.00088 | 0.000 | 0.00000 | 0.00193 | 0.00000259 | 0.99993037 | GIANT ORANGE TOCHUI (PREV.ORANGE-PEEL NUDI.) |
| 285 | 72756 | 0.00087 | 0.000 | 0.00016 | 0.00158 | 0.00000258 | 0.99993294 | BUCCINUM SOLENUM |
| 286 | 71535 | 0.00085 | 0.000 | 0.00000 | 0.00185 | 0.00000251 | 0.99993545 | NATICA ALEUTICA |
| 287 | 21921 | 0.00084 | 0.000 | 0.00000 | 0.00222 | 0.00000247 | 0.99993792 | ATKA MACKEREL |
| 288 | 78012 | 0.00083 | 0.000 | 0.00034 | 0.00133 | 0.00000246 | 0.99994038 | SMOOTHSKIN OCTOPUS |
| 289 | 72403 | 0.00079 | 0.000 | 0.00000 | 0.00174 | 0.00000234 | 0.99994273 | BOREOTROPHON MURICIFORMIS (=TROPHON) |
| 290 | 30010 | 0.00079 | 0.000 | 0.00000 | 0.00210 | 0.00000233 | 0.99994506 | THORNYHEAD UNIDENT. |
| 291 | 21378 | 0.00067 | 0.000 | 0.00000 | 0.00179 | 0.00000199 | 0.99994705 | ARCIIC SCULPIN |
| 292 | 20202 | 0.00067 | 0.000 | 0.00018 | 0.00116 | 0.00000199 | 0.99994904 | PACIFIC SAND LANCE |
| 293 | 20038 | 0.00067 | 0.000 | 0.00038 | 0.00097 | 0.00000199 | 0.99995102 | BLACKFIN POACHER |
| 294 | 21300 | 0.00063 | 0.000 | 0.00008 | 0.00117 | 0.00000185 | 0.99995287 | SCULPIN UNIDENT. |
| 295 | 71774 | 0.00061 | 0.000 | 0.00000 | 0.00163 | 0.00000181 | 0.99995468 | BERINGIUS STIMPSONI |
| 296 | 21388 | 0.00056 | 0.000 | 0.00000 | 0.00125 | 0.00000167 | 0.99995634 | ANTLERED SCULPIN |
| 297 | 68020 | 0.00055 | 0.000 | 0.00000 | 0.00146 | 0.00000162 | 0.99995796 | DUNGENESS CRAB |
| 298 | 74416 | 0.00053 | 0.000 | 0.00000 | 0.00141 | 0.00000156 | 0.99995952 | CRISSCROSSED YOLOIA |
| 299 | 75240 | 0.00052 | 0.000 | 0.00000 | 0.00129 | 0.00000154 | 0.99996106 | MACOMA SP. |
| 300 | 92500 | 0.00047 | 0.000 | 0.00000 | 0.00126 | 0.00000140 | 0.99996246 | NEMERTEAN WORM UNIDENT. |
| 301 | 95060 | 0.00047 | 0.000 | 0.00000 | 0.00126 | 0.00000140 | 0.99996386 | ESCHAROPSIS SARSI |
| 302 | 72790 | 0.00046 | 0.000 | 0.00000 | 0.00112 | 0.00000135 | 0.99996521 | ALASKA VOLUTE |
| 303 | 71575 | 0.00045 | 0.000 | 0.00004 | 0.00087 | 0.00000133 | 0.99996654 | POLINICES SP. |
| 304 | 71030 | 0.00044 | 0.000 | 0.00000 | 0.00099 | 0.00000130 | 0.99996784 | ROSY TRITONIA (PREV. DIOMEDES' TRITON) |
| 305 | 66601 | 0.00040 | 0.000 | 0.00000 | 0.00084 | 0.00000118 | 0.99996902 | TANK SHRIMP (SCULPTURED SHRIMP) |
| 306 | 75264 | 0.00040 | 0.000 | 0.00000 | 0.00083 | 0.00000118 | 0.99997019 | SILIQUA SP. |
| 307 | 74050 | 0.00036 | 0.000 | 0.00005 | 0.00067 | 0.00000107 | 0.99997126 | MUSSEL UNIDENT. |
| 308 | 74100 | 0.00036 | 0.000 | 0.00000 | 0.00090 | 0.00000107 | 0.99997233 | SCALLOP UNIDENT. |
| 309 | 74981 | 0.00036 | 0.000 | 0.00000 | 0.00094 | 0.00000105 | 0.99997338 | COCKLE UNIDENT. |
| 310 | 81060 | 0.00035 | 0.000 | 0.00008 | 0.00062 | 0.00000103 | 0.99997441 | SOLASTER SP. |
| 311 | 72531 | 0.00034 | 0.000 | 0.00000 | 0.00087 | 0.00000100 | 0.99997541 | MARGARITES SP. |
| 312 | 00410 | 0.00032 | 0.000 | 0.00000 | 0.00072 | 0.00000095 | 0.99997636 | DEEPSEA SKATE |
| 313 | 21395 | 0.00032 | 0.000 | 0.00000 | 0.00085 | 0.00000094 | 0.99997731 | BLOB SCULPIN |
| 314 | 81092 | 0.00029 | 0.000 | 0.00015 | 0.00044 | 0.00000087 | 0.99997817 | CROSSASTER BOREALIS |
| 315 | 66020 | 0.00029 | 0.000 | 0.00000 | 0.00059 | 0.00000086 | 0.99997904 | PANDALUS SP. |
| 316 | 21439 | 0.00028 | 0.000 | 0.00012 | 0.00045 | 0.00000083 | 0.99997986 | POREHEAD SCULPIN |
| 317 | 80546 | 0.00028 | 0.000 | 0.00004 | 0.00052 | 0.00000083 | 0.99998069 | HENRICIA TUMIDA |
| 318 | 75247 | 0.00028 | 0.000 | 0.00000 | 0.00074 | 0.00000082 | 0.99998151 | HEAVY MACOMA |
| 319 | 75242 | 0.00028 | 0.000 | 0.00000 | 0.00074 | 0.00000082 | 0.99998233 | CHALKY MACOMA |
| 320 | 20000 | 0.00026 | 0.000 | 0.00000 | 0.00056 | 0.00000078 | 0.99998310 | POACHER UNIDENT. |
| 321 | 75201 | 0.00025 | 0.000 | 0.00003 | 0.00047 | 0.00000074 | 0.99998384 | TELLINA SP. |
| 322 | 66033 | 0.00024 | 0.000 | 0.00000 | 0.00054 | 0.00000072 | 0.99998456 | YELLOWLEG PANDALID |
| 323 | 21405 | 0.00024 | 0.000 | 0.00000 | 0.00050 | 0.00000071 | 0.99998527 | EYESHADE SCULPIN |
| 324 | 66175 | 0.00024 | 0.000 | 0.00003 | 0.00044 | 0.00000070 | 0.99998596 | EUALUS GAIMARDII BELCHERI |
| 325 | 79000 | 0.00022 | 0.000 | 0.00006 | 0.00038 | 0.00000064 | 0.99998660 | SQUID UNIDENT. |
| 326 | 00021 | 0.00021 | 0.000 | 0.00011 | 0.00030 | 0.00000062 | 0.99998722 | PACIFIC LAMPREY |
| 327 | 95080 | 0.00020 | 0.000 | 0.00000 | 0.00047 | 0.00000060 | 0.99998782 | CORAL BRYOZOAN |
| 328 | 20622 | 0.00020 | 0.000 | 0.00012 | 0.00028 | 0.00000060 | 0.99998842 | NORTHERN SMOOTHTONGUE |
| 329 | 74080 | 0.00020 | 0.000 | 0.00000 | 0.00046 | 0.00000058 | 0.98998901 | BLUE MUSSEL (PREV. BAY MUSSEL) |

Table C-3.--(Cont.).

| RANK | SPECIES | MEAN CPUE (KG/HA) | VARIANCE | $\begin{array}{r} 90 \mathrm{PI} \\ \text { CONFIDE } \end{array}$ | $\begin{aligned} & \text { NT } \\ & \text { LIMITS } \end{aligned}$ | PROPORTION | CUMULATIVE PROPORTION | NAME |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 330 | 74414 | 0.00017 | 0.000 | 0.00000 | 0.00046 | 0.00000051 | 0.99998951. | YOLDIA SP. |
| 331 | 81870 | 0.00017 | 0.000 | 0.00000 | 0.00037 | 0.00000050 | 0.99999001° | DIPSACASTER BOREALIS |
| 332 | 20100 | 0.00016 | 0.000 | 0.00004 | 0.00028 | 0.00000047 | 0.99999048 | SLICKHEAD UNIDENT. |
| 333 | 74060 | 0.00016 | 0.000 | 0.00000 | 0.00042 | 0.00000047 | 0.99999095 | NORTHERN HORSEMUSSEL (PREV. HORSE MUSSEL) |
| 334 | 66050 | 0.00015 | 0.000 | 0.00000 | 0.00041 | 0.00000045 | 0.99999141 | COONSTRIPE SHRIMP |
| 335 | 66548 | 0.00015 | 0.000 | 0.00000 | 0.00040 | 0.00000045 | 0.99999185 | SAND SHRIMP |
| 336 | 74435 | 0.00014 | 0.000 | 0.00000 | 0.00034 | 0.00000042 | 0.99999227 | NUCULANA SP. |
| 337 | 10190 | 0.00013 | 0.000 | 0.00000 | 0.00027 | 0.00000040 | 0.99999267 | DEEPSEA SOLE |
| 338 | 40011 | 0.00013 | 0.000 | 0.00000 | 0.00033 | 0.00000037 | 0.99999304 | HYDROID UNIDENT. |
| 339 | 94500 | 0.00011 | 0.000 | 0.00000 | 0.00029 | 0.00000032 | 0.99999337 | ECHIUROID HORM UNIDENT. |
| 340 | 21010 | 0.00010 | 0.000 | 0.00004 | 0.00016 | 0.00000030 | 0.99999367 | PACIFIC VIPERFISH |
| 341 | 22610 | 0.00010 | 0.000 | 0.00000 | 0.00022 | 0.00000030 | 0.99999397 | CALIFORNIA HEADLIGHTFISH |
| 342 | 74982 | 0.00010 | 0.000 | 0.00000 | 0.00022 | 0.00000029 | 0.99999426 | NUTTAL COCKLE |
| 343 | 30150 | 0.00009 | 0.000 | 0.00000 | 0.00025 | 0.00000028 | 0.99999453 | DUSKY ROCKFISH |
| 344 | 21441 | 0.00009 | 0.000 | 0.00000 | 0.00024 | 0.00000027 | 0.99999480 | SPATULATE SCULPIN |
| 345 | 69335 | 0.00008 | 0.000 | 0.00000 | 0.00020 | 0.00000025 | 0.99999505 | PARALOMIS MULTISPINA |
| 346 | 82530 | 0.00008 | 0.000 | 0.00000 | 0.00021 | 0.00000024 | 0.99999529 | ORANGE-PINK SEA URCHIN |
| 347 | 81910 | 0.00008 | 0.000 | 0.00003 | 0.00013 | 0.00000024 | 0.99999554 | LUIDIASTER DAWSONI |
| 348 | 20055 | 0.00008 | 0.000 | 0.00000 | 0.00020 | 0.00000023 | 0.99999576 | SMOOTH ALLIGATORFISH |
| 349 | 70100 | 0.00008 | 0.000 | 0.00000 | 0.00020 | 0.00000022 | 0.99999599 | CHITON UNIDENT. |
| 350 | 69336 | 0.00007 | 0.000 | 0.00000 | 0.00016 | 0.00000021 | 0.99999620 | SCALED CRAB |
| 351 | 74440 | 0.00006 | 0.000 | 0.00000 | 0.00017 | 0.00000019 | 0.99999639 | STOUT NUTCLAM |
| 352 | 72304 | 0.00006 | 0.000 | 0.00000 | 0.00016 | 0.00000017 | 0.99999656 | CROWNED HAIRYSNAIL |
| 353 | 21345 | 0.00006 | 0.000 | 0.00000 | 0.00015 | 0.00000017 | 0.99999673 | LONGFIN IRISH LORD |
| 354 | 71890 | 0.00006 | 0.000 | 0.00000 | 0.00015 | 0.00000016 | 0.99999690 | PLICIfUSUS SP. |
| 355 | 22178 | 0.00005 | 0.000 | 0.00000 | 0.00012 | 0.00000016 | 0.99999706 | PACIFIC SPINY LUMPSUCKER |
| 356 | 80730 | 0.00005 | 0.000 | 0.00002 | 0.00009 | 0.00000016 | 0.99999722 | ORANGE BAT STAR |
| 357 | 81090 | 0.00005 | 0.000 | 0.00000 | 0.00014 | 0.00000015 | 0.99999737 | CROSSASTER SP. |
| 358 | 22912 | 0.00005 | 0.000 | 0.00002 | 0.00008 | 0.00000015 | 0.99999752 | ONEIRODES SP. |
| 359 | 66060 | 0.00005 | 0.000 | 0.00000 | 0.00010 | 0.00000014 | 0.99999767 | PANDALOPSIS ALEUTICA |
| 360 | 00485 | 0.00005 | 0.000 | 0.00000 | 0.00013 | 0.00000014 | 0.99999781 | WHITEBROW SKATE |
| 361 | 69300 | 0.00005 | 0.000 | 0.00000 | 0.00009 | 0.00000013 | 0.99999794 | LITHODES COUESI |
| 362 | 20002 | 0.00005 | 0.000 | 0.00000 | 0.00012 | 0.00000013 | 0.99999807 | DRAGON POACHER |
| 363 | 21339 | 0.00004 | 0.000 | 0.00000 | 0.00012 | 0.00000013 | 0.99999820 | MALACOCOTTUS SP. |
| 364 | 66770 | 0.00004 | 0.000 | 0.00001 | 0.00008 | 0.00000013 | 0.99999833 | GLASS SHRIMP |
| 365 | 00495 | 0.00004 | 0.000 | 0.00000 | 0.00009 | 0.00000012 | 0.99999846 | OKHOTSK SKATE |
| 366 | 66150 | 0.00004 | 0.000 | 0.00000 | 0.00008 | 0.00000011 | 0.99999857 | HIPPOLYTİ SHRIMP UNIDENT. |
| 367 | 69100 | 0.00004 | 0.000 | 0.00000 | 0.00008 | 0.00000011 | 0.99999867 | PAGURUS TANNERI |
| 368 | 23843 | 0.00003 | 0.000 | 0.00000 | 0.00009 | 0.00000010 | 0.99999877 | BEARDED WARBONNET |
| 369 | 71724 | 0.00003 | 0.000 | 0.00000 | 0.00008 | 0.00000009 | 0.99999886 | ROSY WHELK |
| 370 | 20001 | 0.00003 | 0.000 | 0.00000 | 0.00008 | 0.00000009 | 0.99999895 | TUBENOSE POACHER |
| 371 | 24152 | 0.00003 | 0.000 | 0.00000 | 0.00006 | 0.00000009 | 0.99999904 | KAMCHATKA EELPOUT |
| 372 | 23806 | 0.00003 | 0.000 | 0.00000 | 0.00007 | 0.00000008 | 0.99999912 | STOUT EEL日LENNY |
| 373 | 23850 | 0.00003 | 0.000 | 0.00000 | 0.00007 | 0.00000008 | 0.99999920 | UHITEBARRED PRICKLEBACK |
| 374 | 23800 | 0.00003 | 0.000 | 0.00000 | 0.00007 | 0.00000008 | 0.99999927 | PRICKLEBACK UNIDENT. |
| 375 | 66772 | 0.00003 | 0.000 | 0.00001 | 0.00004 | 0.00000007 | 0.99999935 | CRIMSON PASIPHAEID |
| 376 | 93100 | 0.00002 | 0.000 | 0.00000 | 0.00006 | 0.00000007 | 0.99999942 | PRIAPULID WORM UNIDENT. |
| 377 | 83400 | 0.00002 | 0.000 | 0.00000 | 0.00005 | 0.00000006 | 0.99999948 | OPHIOPHOLIS ACULEATA |

Table C-3.-.(Cont.).

| RANK | SPECIES | MEAN CPUE (KG/HA) | VARIANCE | 90 PERCENTCONFIDENCE LIMITS | | PROPORTION | CUMULATIVE PROPORTION | NAME |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 378 | 66030 | 0.00002 | 0.000 | 0.00000 | 0.00005 | 0.00000006 | 0.99999953 | OCEAN SHRIMP (PREV. OCEAN PINK SHRIMP) |
| 379 | 69316 | 0.00002 | 0.000 | 0.00000 | 0.00005 | 0.00000005 | 0.99999959 | HAPALOGASTER GREBNITZKII |
| 380 | 23000 | 0.00002 | 0.000 | 0.00000 | 0.00005 | 0.00000005 | 0.99999964 | SMELT UNIDENT. |
| 381 | 22900 | 0.00002 | 0.000 | 0.00000 | 0.00004 | 0.00000005 | 0.99999969 | DREAMER UNIDENT. |
| 382 | 20614 | 0.00002 | 0.000 | 0.00000 | 0.00003 | 0.00000005 | 0.99999974 | dEEPSEA SMELT UNIDENT. |
| 383 | 80650 | 0.00001 | 0.000 | 0.00000 | 0.00003 | 0.00000004 | 0.99999977 | HIPPASTERIA SPINOSA |
| 384 | 97000 | 0.00001 | 0.000 | 0.00000 | 0.00002 | 0.00000003 | 0.99999981 | BRACHIOPOD UNIDENT. |
| 385 | 22300 | 0.00001 | 0.000 | 0.00000 | 0.00002 | 0.00000003 | 0.99999984 | BIGSCALE UNIDENT. |
| 386 | 66004 | 0.00001 | 0.000 | 0.00000 | 0.00002 | 0.00000003 | 0.99999987 | SERGESTES SP. |
| 387 | 23603 | 0.00001 | 0.000 | 0.00000 | 0.00002 | 0.00000002 | 0.99999989 | NORTHERN PEARLEYE |
| 388 | 66515 | 0.00001 | 0.000 | 0.00000 | 0.00001 | 0.00000002 | 0.99999991 | COMMON CRANGON |
| 389 | 56300 | 0.00000 | 0.000 | 0.00000 | 0.00001 | 0.00000001 | 0.99999992 | SCALE WORM UNIDENT. |
| 390 | 23962 | 0.00000 | 0.000 | 0.00000 | 0.00001 | 0.00000001 | 0.99999993 | BARRELEYE |
| 391 | 21000 | 0.00000 | 0.000 | 0.00000 | 0.00001 | 0.00000001 | 0.99999995 | VIPERFISH UNIDENT. |
| 392 | 45000 | 0.00000 | 0.000 | 0.00000 | 0.00001 | 0.00000001 | 0.99999996 | COMB JELLY UNIDENT. |
| 393 | 82675 | 0.00000 | 0.000 | 0.00000 | 0.00001 | 0.00000001 | 0.99999997 | BRISASTER LATIFRONS |
| 394 | 23620 | 0.00000 | 0.000 | 0.00000 | 0.00001 | 0.00000001 | 0.99999998 | SCALY PAPERBONE (PREV. SCALY WEARYFISH) |
| 395 | 66171 | 0.00000 | 0.000 | 0.00000 | 0.00001 | 0.00000001 | 0.99999998 | eUalus barbatus |
| 396 | 81130 | 0.00000 | 0.000 | 0.00000 | 0.00001 | 0.00000001 | 0.99999999 | LOPHASTER FURCILLIGER |
| 397 | 21800 | 0.00000 | 0.000 | 0.00000 | 0.00001 | 0.00000001 | 1.00000000 | BRISTLEMOUTH UNIDENT. (PREV. ANGLEMOUTH) |
| | total | 338.58376 | | | | | | |

APPENDIX D

Abundance and Size Composition Estimates for Principal Species of Fish, Shrimps, Squids, and Octopuses

Appendix D presents estimates of catch per unit effort (CPUE), biomass, and population numbers and variances and confidence intervals for the sampled population of principal species. Confidence intervals include only sampling error and do not incorporate effects of biases from other causes. The appendix also contains population estimates by sex and centimeter length interval for these species.

Definitions of headings that are not readily apparent are as follows:

Stratum--Subareas l-12 (see Fig. 3) were divided into standard and high-density sampling stratum for analytical purposes. Stratum included in each subarea were as follows:

| Subarea | Stratum | Sampling density | Subarea | Stratum | Sampling density |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 10 | Standard | 7 | 71 | Standard |
| 2 | 20 | , | 8 | 72,73,74 | High |
| 3 | 30 | " | 9 | 81 | Standard |
| | 31 | High | 10 | 82 | |
| 4 | 40 | Standard | 11 | 83 | " |
| | 41,42 | High | 12 | 84 | " |
| 5 | 50 | Standard | | | |
| 6 | 60 | - | | | |
| | 61 | High | | | |

Subtotals show estimates for the overall subarea derived from the sum of the estimates from the individual stratum.

Abundance estimates are also summarized regionally as shown by the following stratum codes: 100--North shelf, 200--standard annual survey area, $300--$ North shelf and standard survey area combined, 400--slope.

Area--Measured in square nautical miles.
Samples--Number of sampling units in the stratum. A sampling unit is the mean path width of the trawl times a distance of one nautical mile.

Mean WT KG--Mean weight of individual fish or invertebrates in kilograms.

Method used--Code 1 indicates that all catch records had weights and numbers for species, and code 3 indicates that the weights and numbers available were used to calculate mean weight per fish.

Biomass MT--Biomass estimates in metric tons.
L-F--Length frequency measurements.
Tables $D-1$ to $D-24$ present abundance estimtes from computer analyses of the survey data for the species listed below. For each species having complete data available, the tables are subdivided into the following sections by strata, (b) biomass by strata, (c) population numbers by strata, and (d) population numbers by sex and centimeter length intervals for the overall survey area. Table Page
D-l. Walleye pollock (bottom trawl survey) 222
D-2. Walleye pollock (midwater trawl survey) 227
D-3. Pacific cod 232
D-4. Sablefish 238
D-5. Pacific ocean perch 242
D-6. Shortraker rockfish 246
D-7. Rougheye rockfish 249
D-8. Shortspine thornyhead 251
D-9. Yellowfin sole 256
D-10. Rock sole 260
D-ll. Flathead sole 264
D-12. Alaskaplaice 268
D-13. Greenlandturbot 272
D-14. Arrowtooth flounder 277
D-15. Pacific halibut 282
D-16. Longhead dab 288
D-17. Starry flounder 292
D-18. Rex sole 296
D-19. Pacific herring 300
D-20. Giant grenadier 303
D-21. Coryphaenoides spp 305
D-22. Total shrimps 307
D-23. Squids 310
D-24. Octopuses 313
Section d of Table D-2 contains combined population number estimates by centimeter length interval for walleye pollock from both the bottom trawl and midwater survey.

Table D.I. .- VAl leye pollock (from bottom trawl survey). Section a, CPUE estinates by stratum

| STRATUM | AREA SQ. MI. | SAMPLES | TOTAL HAULS | HAULS HITH CATCH | HAULS WITH NUMS. | $\begin{aligned} & \text { HAULS } \\ & \text { WITH } \\ & \text { L-F } \end{aligned}$ | MEAN CPUE
 KG/HA | Variance MEAN CPUE KG/HA | MEAN CPUE NO/HA | Variance MEAN CPUE NO/HA |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 10 | 22,704. | 2,627,943 | 58 | 50 | 50 | | | | | |
| 20 | 11,962. | 1,384,553 | 31 | 31 | 31 | 49 31 | $\begin{aligned} & 18.78 \\ & 11.02 \end{aligned}$ | $\begin{aligned} & .315689 \mathrm{E}+02 \\ & .469956 \mathrm{E}+01 \end{aligned}$ | $\begin{aligned} & 17.42 \\ & 26.11 \end{aligned}$ | $\begin{aligned} & .370885 \mathrm{E}+02 \\ & .446314 \mathrm{E}+02 \end{aligned}$ |
| 30 | 27,559. | 3,189,999 | 66 | 66 | 66 | 65 | 96.20 | .203057E+03 | | |
| 31 | 2,558. | 296,105 | 9 | 9 | 9 | 9 | 318.69 | $\begin{array}{r} .203057 E+03 \\ .205782 E+05 \end{array}$ | $\begin{aligned} & 121.66 \\ & 494.27 \end{aligned}$ | |
| SUBTOTAL | 30,118. | 3,486,104 | 75 | 75 | 75 | 74 | $\begin{aligned} & 318.69 \\ & 115.10 \end{aligned}$ | $\begin{aligned} & -205782 \mathrm{E}+05 \\ & .318490 \mathrm{E}+03 \end{aligned}$ | $\begin{aligned} & 494.27 \\ & 153.31 \end{aligned}$ | $\begin{aligned} & .515484 \mathrm{E}+05 \\ & .686468 \mathrm{E}+03 \end{aligned}$ |
| 40 | 18,281. | 2,116,073 | 44 | 44 | 44 | 44 | 99.15 | | | |
| 41 | 7,001. | - 810,309 | 31 | 31 | 31 | 31 | 138.03 | $\begin{aligned} & .119599 E+04 \\ & .899465 E+03 \end{aligned}$ | 143.82 173.25 | $.348448 \mathrm{E}+04$
 $150738 E+04$ |
| 42 | 6,154. | 712,328 | 21 | 21 | 21 | 21 | 100.10 | .841615E+03 | 173.25 129.08 | $.150738 E+04$ $.149458 E+04$ |
| SUBTOTAL | 31,436. | 3,638,710 | 96 | 96 | 96 | 96 | 107.99 | . $480661 \mathrm{E}+03$ | 129.08 147.49 | . $149458 \mathrm{E}+04$ |
| 50 | 11,310. | 1,309,140 | 27 | 26 | 26 | 26 | 108.29 | . $873446 \mathrm{E}+03$ | 142.97 | . $169299 \mathrm{E}+04$ |
| 60 | 25,704. | 2,975,204 | 60 | 60 | 60 | | | .535122E+04 | | |
| 60 SUBTOTAL | 1,874. | 216,948 $3.192,153$ | 7 67 | 7 67 | 7 6 | 7 | $\begin{aligned} & 418.89 \\ & 410.89 \end{aligned}$ | $.535122 E+04$ $.153074 E+05$ | $\begin{aligned} & 865.48 \\ & 808.92 \end{aligned}$ | $\begin{aligned} & .216970 E+05 \\ & .868214 E+05 \end{aligned}$ |
| SUBTOTAL | 27,578. | 3,192,153 | 67 | 67 | 67 | 66 | 418.35 | . $471927 \mathrm{E}+04$ | 861.63 | . $192490 \mathrm{E}+05$ |
| 71 | 21,233. | 2,457,710 | 25 | 23 | 23 | 22 | 12.48 | .911576E+01 | 33.07 | .298029E+03 |
| 72 | 12,215. | 1,413,893 | 15 | 14 | 14 | 13 | | | | |
| 73 | 5,494. | 635,915 | 7 | 7 | 7 | $\begin{array}{r}13 \\ \hline\end{array}$ | 6.83 179.11 | $.808930 E+01$ $.134540 E+04$ | 183.91 503.27 | $.305063 E+05$ $.382090 E+05$ |
| 74 | 6,202. | 717,847 | 13 | 13 | 13 | 13 | 0.59 | . $116511 \mathrm{E}+00$ | 28.00 | . $382090 \mathrm{E}+05$
 $.648463 \mathrm{E}+02$ |
| SUBTOTAL | 23,911. | 2,767,656 | 35 | 34 | 34 | 33 | 44.80 | . $.731465 \mathrm{E}+02$ | $\begin{array}{r} 28.00 \\ 216.85 \end{array}$ | . $648463 \mathrm{E}+02$ $.998308 E+04$ |
| 81 | 2,270. | 262,712 | 47 | 47 | 47 | 47 | 80.85 | | | |
| 82 | 1,646. | 190,552 | 28 | 26 | 26 | - 26 | 119.36 | $.506323 E+03$ $.157028 E+04$ | 94.25 177.65 | $.672631 E+03$ $.376285 E+04$ |
| 83 | 1,281. | 148,224 | 31 | 24 | 24 | 24 | 1.05 | .143377E+00 | 1.21 | $\begin{aligned} & .516285 E+04 \\ & .192194 E+00 \end{aligned}$ |
| 84 | 965. | 111.735 | 27 | 10 | 10 | 10 | 0.16 | . $574158 \mathrm{E}-02$ | 0.30 | $.180216 E-01$ |
| 100 | 45,144. | 5,225,365 | 60 | 57 | 57 | 55 | 29.60 | .225369E+02 | 130.41 | .286656E+04 |
| 200 | 135.107. | 15,638,602 | 354 | 345 | 345 | 342 | 149.37 | .245526E+03 | 261.58 | .920330E+03 |
| 300 | 180,250. | 20,863,967 | 414 | 402 | 402 | 397 | 119.38 | $.139356 \mathrm{E}+03$ | 228.73 | $.696870 \mathrm{E}+03$ |
| 400 | 6,162. | 713,222 | 133 | 107 | 107 | 107 | 61.91 | .180790E+03 | 82.48 | . $359862 \mathrm{E}+03$ |
| total | 186,412. | 21,577,189 | 547 | 509 | 509 | 504 | 117.48 | . $130494 E+03$ | 223.89 | .651955E+03 |

Table D.I. - Valleye pollock (Cont.). Section b, bi onass estimates by stratum

Table D.I.-- Wall eye pollock (Cont). Section c, population number estimates by stratum

| STRATUM | MEAN | UT KG | POPULATION | VARIANCE POPULATION | METHOD USED | EFF. DEG. FREEDOM | 95\% CONFIDENCE LIMIT LOWER | S - POPULATION UPPER |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 10 | | 1.078 | 135,637,235 | . $224901723 E+16$ | 1 | 57:00 | 40,640,241 | $230,634,229$ |
| 20 | | 0.422 | $107,132,456$ | . $751245384 \mathrm{E}+15$ | 1 | 30.00 | 51,163,572 | $163,101,339$ |
| 30 | | 0.791 | 1,149,974,445 | . $335674826 E+17$ | 1 | 65.00 | 783,851,186 | 1,516,097,703 |
| 31 | | 0.645 | 433,683,012 | . $396850799 \mathrm{E}+17$ | 1 | 8.00 | 0 | 893,063,910 |
| SUBTOTAL | | 0.751 | 1,583,657,456 | . $732525625 \mathrm{E}+17$ | | 25.05 | 1,026,114,118 | 2,141,200,795 |
| 40 | | 0.689 | 901,824,538 | . $137000260 \mathrm{E}+18$ | 1 | 43.00 | 154,946,697 | 1,648,702,379 |
| 41 | | 0.797 | 416,001,129 | . $869052894 \mathrm{E}+16$ | 1 | 30.00 | 225,639,749 | 606,362,508 |
| 42 | | 0.776 | 272,450,239 | . $665888992 \mathrm{E}+16$ | 1 | 20.00 | 102.228,422 | 442,672,056 |
| SUBTOTAL | | 0.732 | 1,590,275,906 | $.152349679 E+18$ | | 52.60 | 806,767,115 | 2,373,784,697 |
| 50 | | 0.757 | 554,609,882 | . $254770254 \mathrm{E}+17$ | 1 | 26.00 | 226,440,945 | 882,778,819 |
| 60 | | 0.484 | 7,630,169,657 | .168637797E+19 | 1 | 59.00 | 5,031,593,790 | 10,228,745,524 |
| 61 | | 0.508 | 520,021,257 | . $358807554 \mathrm{E}+17$ | 1 | 6.00 | 56,505,227 | 983,537,288 |
| SUBTOTAL | | 0.486 | 8,150,190,914 | $.172225873 \mathrm{E}+19$ | | 61.26 | 5,525,931,255 | 10,774,450,574 |
| 71 | | 0.377 | 240,808,579 | $.158067023 \mathrm{E}+17$ | 1 | 24.00 | 0 | 500,304,377 |
| 72 | | 0.037 | 770,535,899 | . $535481493 \mathrm{E}+18$ | 1 | 14.00 | 0 | 2,340,173,990 |
| 73 | | 0.356 | 948,326,128 | . $135670642 \mathrm{E}+18$ | 1 | 6.00 | 47,010,484 | 1,849,641,772 |
| 74 | | 0.021 | 59,555,037 | . $293407257 \mathrm{E}+15$ | 1 | 12.00 | 22,230,653 | 96,879,422 |
| SUBTOTAL | | 0.207 | 1,778,417,064 | . $671445542 \mathrm{E}+18$ | | 19.14 | 63,375,594 | 3,493,458,534 |
| 81 | | 0.858 | 73,369,875 | . $407622577 \mathrm{E}+15$ | 1 | 46.00 | 32,693,757 | 114,045,993 |
| 82 | | 0.672 | 100,311,382 | . $119967968 \mathrm{E}+16$ | 1 | 27.00 | 29,237,505 | 171,385,259 |
| 83 | | 0.869 | 530,556 | . $370764121 E+11$ | 1 | 30.00 | 137,364 | 923,747 |
| 84 | | 0.548 | 98,053 | . $197557767 \mathrm{E}+10$ | 1 | 26.00 | 6,669 | 189,437 |
| 100 | | 0.227 | 2,019,225,643 | .687252244E+18 | 1 | 20.05 | 289,917,496 | 3,748,533,791 |
| 200 | | 0.571 | 12,121,503,849 | . $197633826 \mathrm{E}+19$ | 1 | 79.56 | 9,319,230,038 | 14,923,777,660 |
| 300 | | 0.522 | 14,140,729,492 | . $266359050 \mathrm{E}+19$ | 1 | 97.65 | 10,897,300,117 | 17,384,158,868 |
| 400 | | 0.751 | 174,309,865 | . $160734131 \mathrm{E}+16$ | 1 | 45.39 | 93,495,099 | 255,124,632 |
| TOTAL | | 0.525 | 14,315,039,358 | $.266519784 \mathrm{E}+19$ | | 97.77 | 11,070,631,508 | 17,559,447,208 |

Table D.I.--Walleye pollock (Cont.). Section d, population number estimates by sex and centineter interval for the overall survey area.

| LENGTH(MM) | MALES | FEMALES | UNSEXED | TOTAL | PROPORTION | CUMULATIVE PROPORTION |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 60.0 | 66,021 | 0 | 126,899 | 192,920 | 0.00001 | 0.00001 |
| 70.0 | 66.020 | 0 | 111,954 | 111,954 | 0.00001 | 0.00002 |
| 80.0 | 351,009 | . 182.045 | 2,815,764 | 3,348,818 | 0.00023 | 0.00026 |
| 90.0 | 522,450 | 407,960 | 13,612,185 | 14,542,595 | 0.00102 | 0.00127 |
| 100.0 | 1.184,257 | 670,287 | 53,821,968 | 55,676,513 | 0.00389 | 0.00516 |
| 110.0 | 3,469,622 | 1,734,178 | 118,674,107 | 123,877,907 | 0.00865 | 0.01381 |
| 120.0 | 9,707,609 | 7,883,826 | 383,952,817 | 401,544,252 | 0.02805 | 0.04186 |
| 130.0 | 15,970,331 | 10,048,657 | 315,561,775 | 341,580,763 | 0.02386 | 0.06573 |
| 140.0 | 22,649,731 | 12,277,824 | 323,045,053 | 357,972,608 | 0.02501 | 0.09073 |
| 150.0 | 19,474,303 | 16,498,293 | 278,149,893 | 314,122,488 | 0.02194 | 0.11268 |
| 160.0 | 19,161,574 | 15,200,465 | 185,346,743 | 219,708,783 | 0.01535 | 0.12802 |
| 170.0 | 16,750,285 | 12,540,539 | 130,946,812 | 160,237,637 | 0.01119 | 0.13922 |
| 180.0 | 8,117,248 | 17,052,408 | 60,559,733 | 85,729,389 | 0.00599 | 0.14521 |
| 190.0 | 21,174, 134 | 18,490,672 | 26,700,486 | 66,365,292 | 0.00464 | 0.14984 |
| 200.0 | 16,839,497 | 11,912,891 | 15,020,270 | 43,772,658 | 0.00306 | 0.15290 |
| 210.0 | 20,352,751 | 16,218,205 | 20,873,356 | 57,444,312 | 0.00401 | 0.15691 |
| 220.0 | 17,179,121 | 17,662,798 | 11,825,507 | 46,667,426 | 0.00326 | 0.16017 |
| 230.0 | 15,744,312 | 22,254,527 | 7,198,465 | 45,197,304 | 0.00316 | 0.16333 |
| 240.0 | 30,183,381 | 24,822,943 | 3,601,419 | 58,607,742 | 0.00409 | 0.16743 |
| 250.0 | 35,730,536 | 21,605,565 | 456,293 | 57,792,395 | 0.00404 | 0.17146 |
| 260.0 | 25,358,334 | 30,925,111 | 0 | 56,283,445 | 0.00393 | 0.17539 |
| 270.0 | 29,383,072 | 18,137,606 | 0 | 47, 520,678 | 0.00332 | 0.17871 |
| 280.0 | 25,988, 096 | 18,691,094 | 0 | 44,679,190 | 0.00312 | 0.18184 |
| 290.0 | 37.647.037 | 29,083,139 | 0 | 66,730, 176 | 0.00466 | 0.18650 |
| 300.0 | 28,255,082 | 26,253,455 | 0 | 54,508,538 | 0.00381 | 0.19030 |
| 310.0 | 55,880,669 | 27,166,373 | 0 | 83,047,041 | 0.00580 | 0.19611 |
| 320.0 | 50,854,202 | 42,538,294 | 0 | 93,392,495 | 0.00652 | 0.20263 |
| 330.0 | 91,037.990 | 61,986,201 | 0 | 153,024,190 | 0.01069 | 0.21332 |
| 340.0 | 110,231,351 | 79,929,113 | 0 | 190,160,464 | 0.01328 | 0.22660 |
| 350.0 | 212,658,085 | 100,942,112 | 0 | 313,600,197 | 0.02191 | 0.24851 |
| 360.0 | 236,568,479 | 163,309,160 | 0 | 399,877,639 | 0.02793 | 0.27644 |
| 370.0 | 269,138,537 | 174,629,646 | 0 | 443,768,183 | 0.03100 | 0.30744 |
| 380.0 | 269,067.394 | 202,664,540 | 0 | 471,731,935 | 0.03295 | 0.34040 |
| 390.0 | 314,292,757 | 234,148,933 | 0 | 548,441,691 | 0.03831 | 0.37871 |
| 400.0 | 407,429,604 | 252,621,639 | 0 | 660,051,242 | 0.04611 | 0.42482 |
| 410.0 | 418,024,429 | 302,136,556 | 0 | 720,160,985 | 0.05031 | 0.47513 |
| 420.0 | 461,878,831 | 388, 185,117 | 0 | 850,063,948 | 0.05938 | 0.53451 |
| 430.0 | 463,993, 783 | 387,127,400 | 0 | 851,121,184 | 0.05946 | 0.59397 |
| 440.0 | 438,524,415 | 373,213,201 | 0 | 811,737,616 | 0.05671 | 0.65067 |
| 450.0 | 359,935,879 | 336,264,788 | 0 | 696,200,667 | 0.04863 | 0.69931 |
| 460.0 | 301,049,614 | 296,216,034 | 0 | 597,265,648 | 0.04172 | 0.74103 |
| 470.0 | 249,720,894 | 248,037,269 | 0 | 497,758,163 | 0.03477 | 0.77580 |
| 480.0 | 207,321,073 | 192,865,333 | 0 | 400,186,405 | 0.02796 | 0.80376 |
| 490.0 | 189.469,930 | 179,050,213 | 0 | 368,520,142 | 0.02574 | 0.82950 |
| 500.0 | 187,744,071 | 176,916,208 | 0 | 364,660,278 | 0.02547 | 0.85497 |
| 510.0 | 180,326,864 | 156,913,197 | 0 | 337,240,061 | 0.02356 | 0.87853 |
| 520.0 | 136,782,241 | 156,281,543 | 0 | 293,063,784 | 0.02047 | 0.89900 | overal l survey area.

| LENGTH(MM) | MALES | FEMALES | UNSEXED | total | PROPORTION | Cumulative
 PROPORTION |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 530.0 | 117,648,556 | 151,835,830 | | | | |
| 540.0 | 105,907,172 | 131,847,113 | 0 | 269,484, 386 | 0.01883 | 0.91783 |
| 550.0 | 72,887,120 | 115,390, 197 | 0 | 188,277,317 | 0.01661 | 0.93444 |
| 560.0 | 56,484,830 | 97,060,605 | 0 | 153, 545,434 | 0.01315 0.01073 | 0.94759 |
| 570.0 | 33,305,815 | 79,927,575 | 0 | 113,233,390 | 0.00791 | 0.95832 |
| 580.0 | 27,206,872 | 62,279,086 | 0 | 89,485,958 | 0.00791 | 0.96623 |
| 590.0 | 18,892,614 | 59,486,957 | 0 | 78,379,570 | 0.00548 | 0.97248 0.97795 |
| 600.0 610.0 | 18,077,866 | 45,297,411 | 0 | 63,375,277 | 0.00443 | 0.97795 0.98238 |
| 620.0 | $13,324,042$ $7,518,339$ | $36,995,695$ $30,265,582$ | 0 | 50,319,737 | 0.00352 | 0.98590 |
| 630.0 | 6,023,977 | 27,905,481 | 0 | 37,783,921 | 0.00264 | 0.98854 |
| 640.0 | 6,006,369 | 16,852,141 | 0 | $33,929,458$ $22,858,510$ | 0.00237 | 0.99091 |
| 650.0 | 3,990,990 | 17,084,043 | 0 | 21,075,033 | 0.00147 | 0.99250 0.99398 |
| 660.0 | 3,128,779 | 15,183,856 | 0 | 18,312,635 | 0.00128 | 0.99398 0.99525 |
| 67.0 .0 | 2,862,146 | 11,541,136 | 0 | 14,403,282 | 0.00101 | 0.99626 |
| 680.0 690.0 | 1,677,948 | 8,447,561 | 0 | 10,125,509 | 0.00071 | 0.99697 |
| 690.0 700.0 | $1,468,941$ $1,391,028$ | 6,031,241 | 0 | 7,500,182 | 0.00052 | 0.99749 |
| 710.0 | $1.3918,277$ | 5,468,396 | 0 | 8,859,424 | 0.00062 | 0.99811 |
| 720.0 | 495,601 | 4,779,338 | 0. | $6,523,001$ $5,274,940$ | 0.00046 | 0.99857 |
| 730.0 | 1,403,149 | 3,006,684 | 0. | 5,274,940 | 0.00037 0.00031 | 0.99893 |
| 740.0 | 218,483 | 3,030,459 | 0 | 3,248,942 | 0.00023 | 0.99924 0.99947 |
| 750.0 | - 175,558 | 2,326,653 | 0 | 2,502,212 | 0.00017 | 0.99964 |
| 760.0 | 42,536 | 1,289,140 | 0 | 1,331,676 | 0.00009 | 0.99974 |
| 770.0 | 0 | 1,353,902 | 0 | 1,353,902 | 0.00009 | 0.99974 |
| 780.0 | 0 | 882,272 | 0 | 882,272 | 0.00006 | 0.99989 |
| 790.0 800.0 | 0 | 342,555 | 0 | 342,555 | 0.00002 | 0.99992 |
| 800.0 810.0 | 0 39.420 | 135,365 | 0 | 135,365 | 0.00001 | 0.99993 |
| 810.0 820.0 | 39,420 | 55,262 | 0 | 94,682 | 0.00001 | 0.99993 |
| 830.0 | 0 | 314,072 | 0 | 550,902 | 0.00004 | 0.99997 |
| 840.0 | 0 | 81,956 | 0 | 314,072 81,956 | 0.00002
 0.00001 | 0.99999
 1.00000 |
| TOTAL | 6,534,187,311 | 5,828,450,548 | 1,952,401,499 | 14,315,039,358 | | |

Table D. 2.-- Wall leye pollock (from nidwater survey). Section a, nean density estinates by stratum

| Stratum | AREA ${ }^{\text {a }}$ SO. NM. | $\begin{aligned} & \text { AREA } \\ & \text { SQ. KM. } \end{aligned}$ | $\mathrm{N}^{\text {b }}$ | total HAULS | HAULS HITH CATCH | HAULS WITH NUMS. | $\begin{aligned} & \text { HAULS } \\ & \text { WITH } \\ & \text { L-F } \end{aligned}$ | $\begin{aligned} & \text { MEAN } \\ & \text { DENSIIY' } \\ & \text { KG/HA } \end{aligned}$ | VARIANCE MEAN DENSITY KG/HA |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | - | - | - | . - | - | - | - | - | - |
| 2 | - | - | - | * | - | - | - | - | - |
| 3 | 19,610 | 67,260 | 6,239 | - | - | - | - | 74.4 | $2.24 \mathrm{E}+02$ |
| 4 | 19,381 | 66,475 | 8,537 | 1 | 1 | 1 | 1 | 29.5 | $3.18 \mathrm{E}+01$ |
| 5 | 11,310 | 38,792 | 3,001 | 7 | 7 | 7 | 7 | 159.3 | $3.86 E+02$ |
| 6 | 27,578 | 94,590 | 7,638 | 13 | 13 | 13 | 13 | 334.0 | 1.61E+03 |
| 7 | | . | - | - | - | - | - | - | - |
| 8 | 2,289 | 7,851 | 710 | 1 | 1 | 1 | 1 | 187.3 | $2.12 \mathrm{E}+03$ |
| 9 | 2,270 | 7.785 | 829 | - | . | - | - | 86.1 | $1.43 \mathrm{E}+03$ |
| 10 | 1,646 | 5,646 | 714 | - | - | - | - | 32.2 | $4.63 E+01$ |
| 11 | - | - | - | - | - | - | - | | |
| 12 | - | - | \because | - | - | - | - | - | - |
| total | 84,084 | 288.399 | 27.668 | 22 | 22 | 22 | 22 | 162.1 | $1.97 E+02$ |

Table D-2.--Walleye pollock (Cont.). Section b, biomass and population estimates by stratum.

| SUBAREA | Blomass MT | varlance Blomass ${ }^{\text {a }}$ | BIDMASS95% CONFIDENCE LIMITS | | POPULATION | VARIANCE POPULATION ${ }^{\text {© }}$ | POPULATION 95\% CONFIDENCE INTERVAL ${ }^{\text {c }}$ | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | LOWER | UPPER | | | LOWER | UPPER |
| 1 | - | - | - | - | - | - | - | |
| 2 | - | - | * | - | - | - | - | - |
| 3 | 500,493 | 1.014317E +10 | 303,095 | 697,891 | 851,396,672 | $2.935225 \mathrm{E}+16$ | 515,599,711 | 1,187,193,633 |
| 4 | 195,864 | $1.403458 E+09$ | 122,437 | 269,291 | 428,579,797 | $6.719756 \mathrm{E}+15$ | 267,910,523 | 589,249,071 |
| 5 | 586,962 | $5.806674 \mathrm{E}+09$ | 437,607 | 736,317 | 1,076,931,565 | $1.954716 \mathrm{E}+16$ | 802,901,690 | 1,350,961,439 |
| 6 | 3,159,824 | $1.442727 \mathrm{E}+11$ | 2,415,352 | 3,904,296 | 9,129,602,641 | 1.204376E+18 | 6,978,618,798 | 11,280,586,483 |
| 7 | - | - | - | - | - | - | | |
| 8 | 147,087 | $1.307594 E+09$ | 76,212 | 217.962 | 636,359,804 | $2.447541 \mathrm{E}+16$ | 329,725,291 | 942,994,317 |
| 9 | 67,040 | $8.685665 E+08$ | 9,276 | 124,804 | 123,573,219 | $2.951099 \mathrm{E}+15$ | 17,098,142 | 230,048,296 |
| 10 | 18,166 | $1.476182 E+07$ | 10,636 | 25,697 | 45,361,746 | $9.204512 \mathrm{E}+13$ | 26,557,477 | 64,166,015 |
| 11 | - | - | , | | , | - | -. | 64,165,015 |
| 12 | - | - | - | - | - | . | - | - |
| jotal | 4,675,436 | $1.638169 E+11$ | 3,882,140 | 5,468,732 | 12,291,805,444 | $1.287514 \mathrm{E}+18$ | 10,067,819,529 | 14,515,791,358 |

${ }^{\text {a }}$ These areas represent the portion of the subarea in which polock concentrations (> age $\mathbf{0}$) were observed in miduater. Density estimates (kg/ha) represent density occurring within these areas.
${ }^{\text {b }}$ Nunber of 1 minute echo integrator density outputs.
'Incl udes only sampling error. Abundance estinates may be biased due to errors in target strength or calibration constant neasurenents.

Table D-2. --Walleye pollock (Cont.). Section C, population number estimates by centimeter length interval for the overall midwater survey area.

| LENGTH (CM) | TOTAL | PROPORTION | CUMULATIVE
 PROPORTION |
| :---: | :---: | :---: | :---: |
| 13.0 | 1,842,415 | 0.0002 | 0.0002 |
| 14.0 | 4,506,163 | 0.0004 | 0.0005 |
| 15.0 | 0000 | 0.0000 | 0.0005 |
| 16.0 | 4,506,163 | 0.0004 | 0.0009 |
| 17.0 | 0000 | 0.0000 | 0.0009 |
| 18.0 | 6,348,578 | 0.0005 | 0.0015 |
| 19.0 | 15,360,910 | 0.0013 | 0.0027 |
| 20.0 | 30,503,056 | 0.0026 | 0.0053 |
| 21.0 | 45,641,822 | 0.0039 | 0.0092 |
| 22.0 | 73,175,380 | 0.0062 | 0.0154 |
| 23.0 | 215,237,019 | 0.0182 | 0.0335 |
| 24.0 | 250,529,158 | 0.0212 | 0.0547 |
| 25.0 | 240,807,448 | 0.0203 | 0.0750 |
| 26.0 | 261,587,988 | 0.0221 | 0.0971 |
| 27.0 | 267,460,652 | 0.0226 | 0.1197 |
| 28.0 | 226,637,575 | 0.0191 | 0.1388 |
| 29.0 | 296,207,488 | 0.0250 | 0.1638 |
| 30.0 | 308,363,475 | 0.0260 | 0.1899 |
| 31.0 | 431,770,949 | 0.0365 | 0.2263 |
| 32.0 | 498,029,862 | 0.0421 | 0.2684 |
| 33.0 | 557,955,925 | 0.0471 | 0.3155 |
| 34.0 | 761,384,812 | 0.0643 | 0.3798 |
| 35.0 | 663,409,847 | 0.0560 | 0.4358 |
| 36.0 | 683,600,759 | 0.0577 | 0.4935 |
| 37.0 | 703,885,768 | 0.0594 | 0.5529 |
| 38.0 | 675,010,915 | 0.0570 | 0.6099 |
| 39.0 | 627,899,831 | 0.0530 | 0.6630 |
| 40.0 | 606,560,009 | 0.0512 | 0.7142 |
| 41.0 | 557,387,950 | 0.0471 | 0.7612 |
| 42.0 | 502,283,389 | 0.0424 | 0.8036 |
| 43.0 | 364,937,144 | 0.0308 | 0.8345 |
| 44.0 | 365,053,617 | 0.0308 | 0.8653 |
| 45.0 | 287,140,368 | 0.0242 | 0.8895 |
| 46.0 | 206,387,618 | 0.0174 | 0.9069 |
| 47.0 | 228,220,487 | 0.0193 | 0.9262 |
| 48.0 | 152,365,772 | 0.0129 | 0.9391 |
| 49.0 | 133,177,310 | 0.0112 | 0.9503 |
| 50.0 | 118,143,060 | 0.0100 | 0.9603 |
| 51.0 | 110,307,709 | 0.0093 | 0.9696 |
| 52.0 | 89,153,712 | 0.0075 | 0.9771 |
| 53.0 | 90,358,439 | 0.0076 | 0.9848 |
| 54.0 | 58,775,689 | 0.0050 | 0.9897 |
| 55.0 | 83,716,850 | 0.0071 | 0.9968 |
| 56.0 | 15,978,830 | 0.0013 | 0.9982 |
| 57.0 | 8,231,200 | 0.0007 | 0.9988 |
| 58.0 | 5,080,722 | 0.0004 | 0.9993 |
| 59.0 | 2,345,467 | 0.0002 | 0.9995 |
| 60.0 | 3,682,772 | 0.0003 | 0.9998 |

229
Table D-2. --Walleye pollock (Cont.). Section C, population number estimates by centimeter length interval for the overall midwater survey area.

| LENGTH (CM) | TOTAL | PROPORTION | CUMULATIVE
 PROPORTION |
| :---: | :---: | :---: | :---: |
| 61.0 | 1,119,290 | 0.0001 | 0.9999 |
| 62.0 | 0000 | 0.0000 | 0.9999 |
| 63.0 | 0000 | 0.0000 | 0.9999 |
| 64.0 | 0000 | 0.0000 | 0.9999 |
| 65.0 | 1,421,071 | 0.0001 | 1.0000 |
| TOTALS | 11,843,492,433* | 1.0000 | 1.0000 |
| *Age-specific population estimates were corrected to account for age reading errors (see methods section); therefore, the total population estimate differs from those given in tables showing population estimates by age. | | | |
| | | | |
| | | | |

Table D-2. --Walleye pollock (Cont.). Section d, population number estimates by centimeter length interval for the overall midwater and bottom trawl survey area.

| LENGTH (CM) | TOTAL | PROPORTION | CUMULATIVE
 PROPORTION |
| :---: | :---: | :---: | :---: |
| 6.0 | 192,920 | 0.0000 | 0.0000 |
| 7.0 | 111,954 | 0.0000 | 0.0000 |
| 8.0 | 3,348,818 | 0.0001 | 0.0001 |
| 9.0 | 14,542,595 | 0.0006 | 0.0007 |
| 10.0 | 55,676,513 | 0.0021 | 0.0028 |
| 11.0 | 123,877,907 | 0.0047 | 0.0076 |
| 12.0 | 401,544,252 | 0.0154 | 0.0229 |
| 13.0 | 343,423,178 | 0.0131 | 0.0360 |
| 14.0 | 362,478,771 | 0.0139 | 0.0499 |
| 15.0 | 314,122,488 | 0.0120 | 0.0619 |
| 16.0 | 224,214,946 | 0.0086 | 0.0705 |
| 17.0 | 160,237,637 | 0.0061 | 0.0766 |
| 18.0 | 92,077,967 | 0.0035 | 0.0801 |
| 19.0 | 81,726,202 | 0.0031 | 0.0832 |
| 20.0 | 74,275,714 | 0.0028 | 0.0861 |
| 21.0 | 103,086,134 | 0.0039 | 0.0900 |
| 22.0 | 119,842,806 | 0.0046 | 0.0946 |
| 23.0 | 260,434,323 | 0.0100 | 0.1046 |
| 24.0 | 309,136,900 | 0.0118 | 0.1164 |
| 25.0 | 298,599,843 | 0.0114 | 0.1278 |
| 26.0 | 317,871,433 | 0.0122 | 0.1399 |
| 27.0 | 314,981,330 | 0.0120 | 0.1520 |
| 28.0 | 271,316,765 | 0.0104 | 0.1624 |
| 29.0 | 362,937,664 | 0.0139 | 0.1762 |
| 30.0 | 362,872,013 | 0.0139 | 0.1901 |
| 31.0 | 514,817,990 | 0.0197 | 0.2098 |
| 32.0 | 591,422,357 | 0.0226 | 0.2324 |
| 33.0 | 710,980,115 | 0.0272 | 0.2596 |
| 34.0 | 951,545,276 | 0.0364 | 0.2960 |
| 35.0 | 977,010,044 | 0.0373 | 0.3333 |
| 36.0 | 1,083,478,398 | 0.0414 | 0.3747 |
| 37.0 | 1,147,653,951 | 0.0439 | 0.4186 |
| 38.0 | 1,146,742,850 | 0.0438 | 0.4624 |
| 39.0 | 1,176,341,522 | 0.0450 | 0.5074 |
| 40.0 | 1,266,611,251 | 0.0484 | 0.5558 |
| 41.0 | 1,277,548,935 | 0.0488 | 0.6047 |
| 42.0 | 1,352,347,337 | 0.0517 | 0.6564 |
| 43.0 | 1,216,058,328 | 0.0465 | 0.7028 |
| 44.0 | 1,176,791,233 | 0.0450 | 0.7478 |
| 45.0 | 983,341,035 | 0.0376 | 0.7854 |
| 46.0 | 803,653,266 | 0.0307 | 0.8161 |
| 47.0 | 725,978,650 | 0.0278 | 0.8439 |
| 48.0 | 552,552,177 | 0.0211 | 0.8650 |
| 49.0 | 501,697,452 | 0.0192 | 0.8842 |
| 50.0 | 482,803,338 | 0.0185 | 0.9027 |
| 51.0 | 447,547,770 | 0.0171 | 0.9198 |
| 52.0 | 382,217,496 | 0.0146 | 0.9344 |
| 53.0 | 359,842,825 | 0.0138 | 0.9481 |

Table D-2. --Walleye pollock (Cont.) Section d, population number estimates by centimeter length interval for the overall midwater and bottom trawl survey area.

| | LENGTH ($C M$) | TOTAL | PROPORTION | CUMULATIVE
 PROPORTION |
| :---: | :---: | :---: | :---: | :---: |
| | 54.0 | 296,529,974 | 0.0113 | 0.9595 |
| | 55.0 | 271,994,167 | 0.0104 | 0.9699 |
| | 56.0 | 169,524,264 | 0.0065 | 0.9764 |
| | 57.0 | 121,464,590 | 0.0046 | 0.9810 |
| | 58.0 | 94,566,680 | 0.0036 | 0.9846 |
| | 59.0 | 80,725,037 | 0.0031 | 0.9877 |
| | 60.0 | 67,058,049 | 0.0026 | 0.9903 |
| | 61.0 | 51,439,027 | 0.0020 | 0.9922 |
| | 62.0 | 37,783,921 | 0.0014 | 0.9937 |
| | 63.0 | 33,929,458 | 0.0013 | 0.9950 |
| | 64.0 | 22,858,510 | 0.0009 | 0.9958 |
| | 65.0 | 22,496,104 | 0.0009 | 0.9967 |
| | 66.0 | 18,312,635 | 0.0007 | 0.9974 |
| | 67.0 | 14,403,282 | 0.0006 | 0.9980 |
| | 68.0 | 10,125,509 | 0.0004 | 0.9983 |
| | 69.0 | 7,500,182 | 0.0003 | 0.9986 |
| | 70.0 | 8,859,424 | 0.0003 | 0.9990 |
| | 71.0 | 6,523,001 | 0.0002 | 0.9992 |
| | 72.0 | 5,274,940 | 0.0002 | 0.9994 |
| | 73.0 | 4,409,832 | 0.0002 | 0.9996 |
| | 74.0 | 3,248,942 | 0.0001 | 0.9997 |
| | 75.0 | 2,502,212 | 0.0001 | 0.9998 |
| | 76.0 | 1,331,676 | 0.0001 | 0.9999 |
| | 77.0 | 1,353,902 | 0.0001 | 0.9999 |
| | 78.0 | 882,272 | 0.0000 | 0.9999 |
| | 79.0 | 342,555 | 0.0000 | 1.0000 |
| | 80.0 | 135,365 | 0.0000 | 1.0000 |
| | 81.0 | 94,682 | 0.0000 | 1.0000 |
| | 82.0 | 550,902 | 0.0000 | 1.0000 |
| | 83.0 | 314,072 | 0.0000 | 1.0000 |
| | 84.0 | 81,956 | 0.0000 | 1.0000 |
| TOTALS | | 26,158,531,791* | 1.0000 | 1.0000 |

*Age-specific population estimates for the midwater data were corrected to account for age reading errors (see methods section); therefore, the total population estimate differs from those given in tables showing population estimates by age.

| STRATUM | AREA | SQ. MI. | SAMPLES | TOTAL HAULS | HAULS HITH CATCH | HAULS UITH NUMS. | HAULS
 WITH
 L-F | MEAN CPUE KG/HA | VARIANCE MEAN CPUE KG/HA | MEAN CPUE NO/HA | VARIANCE MEAN CPUE NO/HA |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 10 | | 22,704. | 2,627,943 | 58 | 52 | 52 | 50 | 14.43 | .847219E+01 | 8.81 | 416807E+01 |
| 20 | | 11,962. | 1,384,553 | 31 | 28 | 28 | 27 | 9.24 | . $103580 E+02$ | 5.31 | . $679265 \mathrm{E}+01$ |
| 30 | | 27,559. | 3,189,999 | 66 | 64 | 64 | 62 | 23.79 | . $245748 \mathrm{E}+02$ | 13.70 | $273203 \mathrm{E}+01$ |
| 31 | | 2,558. | 296,105 | 9 | 8 | 8 | 8 | 22.21 | . $263411 \mathrm{E}+02$ | 8.83 | . $580819 \mathrm{E}+01$ |
| SUBTOTAL | | 30,118. | 3,486,104 | 75 | 72 | 72 | 70 | 23.66 | . $207675 \mathrm{E}+02$ | 13.29 | . $232954 \mathrm{E}+01$ |
| 40 | | 18,281. | 2,116,073 | 44 | 38 | 38 | 38 | 15.79 | . 117980E+02 | 12.07 | . $762111 \mathrm{E}+01$ |
| 41 | | 7,001. | 810,309 | 31 | 31 | 31 | 31 | 20.94 | . $171301 \mathrm{E}+02$ | 19.39 | . $166026 \mathrm{E}+02$ |
| 42 | | 6,154. | 712,328 | 21 | 21 | 21 | 20 | 7.65 | .298655E+01 | 12.80 | $.952275 \mathrm{E}+01$ |
| SUBTOTAL | | 31,436. | 3,638,710 | 96 | 90 | 90 | 89 | 15.34 | .495398E+01 | 13.84 | . $376571 \mathrm{E}+01$ |
| 50 | | 11,310. | 1,309,140 | 27 | 27 | 27 | 27 | 26.14 | . $363859 \mathrm{E}+02$ | 6.81 | .154521E+01 |
| 60 | | 25,704. | 2,975,204 | 60 | 59 | 59 | 59 | 31.81 | . $198938 \mathrm{E}+02$ | 11.29 | .249887E+01 |
| 61 | | 1,874. | 216,948 | 7 | 7 | 7 | 7 | 27.43 | . $311483 \mathrm{E}+03$ | 10.04 | . $276349 \mathrm{E}+02$ |
| SUBTOTAL | | 27,578. | 3,192,153 | 67 | 66 | 66 | 66 | 31.51 | . $187204 \mathrm{E}+02$ | 11.21 | . $229840 \mathrm{E}+01$ |
| 71 | | 21,233. | 2,457,710 | 25 | 16 | 16 | 15 | 5.84 | . $282109 \mathrm{E}+01$ | 2.98 | $.740852 \mathrm{E}+00$ |
| 72 | | 12,215. | 1,413,893 | 15 | 8 | 8 | 7 | 1.49 | .442408E+00 | 0.86 | .974580E-01 |
| 73 | | 5,494. | 635,915 | 7 | 6 | 6 | 6 | 15.24 | . $800341 \mathrm{E}+02$ | 4.21 | . $355434 \mathrm{E}+01$ |
| 74 | | 6,202. | 717,847 | 13 | 6 | 6 | 5 | 0.02 | . $674523 \mathrm{E}-04$ | 0.18 | . $481729 \mathrm{E}-02$ |
| SUBTOTAL | | 23,911. | 2,767,656 | 35 | 20 | 20 | 18 | 4.27 | . $434069 \mathrm{E}+01$ | 1.45 | . $213402 \mathrm{E}+00$ |
| 81 | | 2,270. | 262,712 | 47 | 25 | 25 | 20 | 2.28 | .429013E+00 | 0.79 | .509074E-01 |
| 82 | | 1,646. | 190,552 | 28 | 21 | 21 | 21 | 13.12 | . $236816 \mathrm{E}+02$ | 2.76 | $.703082 \mathrm{E}+00$ |
| 83 | | 1,281. | 148,224 | 31 | 2 | 2 | 2 | 0.49 | . $159126 \mathrm{E}+00$ | 0.15 | .136697E-01 |
| 84 | | 965. | 111,735 | 27 | 0 | 0 | 0 | 0.00 | 0 . | 0.00 | 0. |
| . 100 | | 45,144. | 5,225,365 | 60 | 36 | 36 | 33 | 5.01 | . $184181 \mathrm{E}+01$ | 2.17 | . $223760 \mathrm{E}+00$ |
| 200 | | 135,107. | 15.638,602 | 354 | 335 | 335 | 329 | 20.71 | . 265556E+01 | 10.99 | . $597158 \mathrm{E}+00$ |
| 300 | | 180,250. | 20,863,967 | 414 | 371 | 371 | 362 | 16.77 | . 160749E+01 | 8.78 | . $349534 \mathrm{E}+00$ |
| 400 | | 6.162. | 713,222 | 133 | 48 | 48 | 43 | 4.45 | .175548E+01 | 1.06 | .576835E-01 |
| total | | 186,412. | 21,577,189 | 547 | 419 | 419 | 405 | 16.37 | .150490E+01 | 8.53 | $.326872 \mathrm{E}+00$ |

Table D-3.--Pacific cod (Cont). Section b, biomass estimates by stratum.

Table D. 3. -- Pacific cod (Cont). Section c, population number estimates by stratum

| STRATUM | MEAN WT KG | POPULATION | VARIANCE POPULATION | METHOD USED | EFF. DEG. FREEDOM | 95\% CONFIDENCE LIMITS LOHER | - POPULATION UPPER |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 10 | 1.637 | 68,618,090 | . $252748794 \mathrm{E}+15$ | 1 | 57.00 | 36,771,861 | 100,464,319 |
| 20 | 1.740 | 21,783,388 | . $114335209 \mathrm{E}+15$ | 1 | 30.00 | 0 | 43,618,013 |
| 30 | 1.736 | 129,544,520 | . $244111724 E+15$ | 1 | 65.00 | 98,322,410 | 160,766,630 |
| 31 | 2.515 | 7,748,808 | .447149624E+13 | 1 | 8.00 | 2,872,560 | 12,625,055 |
| SUBTOTAL | 1.780 | 137,293,328 | . $248583220 \mathrm{E}+15$ | | 67.22 | 105,797,072 | 168,789,583 |
| 40 | 1.309 | 75,658,815 | . $299640888 \mathrm{E}+15$ | 1 | 43.00 | 40,729,552 | 110,588,077 |
| 41 | 1.080 | 46,559,841 | . $957191942 \mathrm{E}+14$ | 1 | 30.00 | 26,581,691 | 66,537,990 |
| 42 | 0.597 | 27,021,574 | . $424271590 \mathrm{E}+14$ | 1 | 20.00 | 13,434,177 | 40,608,972 |
| SUBTOTAL | 1.108 | 149,240,229 | . $437787241 \mathrm{E}+15$ | | 77.17 | 107,512,063 | 190,968,396 |
| 50 | 3.840 | 26,403,835 | . $232531287 \mathrm{E}+14$ | 1 | 26.00 | 16,489,495 | 36,318,175 |
| 60 | 2.817 | 99,541,849 | . $194222457 E+15$ | 1 | 59.00 | 71,654,473 | 127.429.226 |
| 61 | 2.731 | 6,455,764 |). $114207124 \mathrm{E}+14$ | 1 | 6.00 | 0 | 14,725,289 |
| SUBTOTAL | 2.812 | 105,997,613 | . $205643169 \mathrm{E}+15$ | | 63.97 | 77,336,205 | 134,659,020 |
| 71 | 1.958 | 21,714,107 | $.392929265 E+14$ | 1 | 24.00 | 8,776,115 | 34,652,099 |
| 72 | 1.736 | 3,601,915 | $.171069526 E+13$ | 1 | 14.00 | 796,393 | 6,407,436 |
| 73 | 3.619 | 7,932,127 | -126205721E+14 | 1 | 6.00 | 0 | 16,625,203 |
| 74 | 0.126 | 392,759 | . $217965841 \mathrm{E}+11$ | 1 | 12.00 | 71,059 | 714,460 |
| SUBTOTAL | 2.936 | 11,926,801 | $.143530639 \mathrm{E}+14$ | | 7.70 | 3,190,419 | 20,663,183 |
| 81 | 2.878 | 617,436 | . $308505185 \mathrm{E}+11$ | 1 | 46.00 | 263.568 | 971,304 |
| 82 | 4.761 | 1,556,324 | . $224158395 \mathrm{E}+12$ | 1 | 27.00 | 584,797 | 2,527,851 |
| 83 | 3.259 | 65,595 | .263704552E+10 | 1 | 30.00 | 0 | 170,456 |
| 84 | 0.000 | 0 | 0. | 1 | 0.00 | 0 | 0 |
| 100 | 2.305 | 33,640,908 | . $536459904 \mathrm{E}+14$ | 1 | 31.60 | 18,715,363 | 48,566,453 |
| 200 | 1.884 | 509,336,483 | . $128235076 \mathrm{E}+16$ | 1 | 291.51 | 438,436,604 | 580,236,362 |
| 300 | 1.910 | 542,977,392 | . $133599675 \mathrm{E}+16$ | 1 | 311.38 | 470,610,115 | 615,344,668 |
| 400 | 4.198 | 2,239,355 | . $257645959 \mathrm{E}+12$ | 1 | 35.27 | 1,208,189 | 3,270,521 |
| TOTAL | 1.919 | 545,216,747 | . $133625440 \mathrm{E}+16$ | | 311.50 | 472,842,515 | 617,590,978 |

| LENGTH(MM) | MALES | FEMALES | UNSEXED | TOTAL | PROPORTION | CUMULATIVE
 PROPORTION |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| - 80.0 | 0 | 0 | 277,491 | 277,491 | 0.00051 | 0.00051 |
| 90.0 | 0 | 0 | 237,927 | 237,927 | 0.00044 | 0.00095 |
| 100.0 | 0 | 28,774 | 0 | 28,774 | 0.00005 | 0.00100 |
| 110.0 | 28,774 | 0 | 376,305 | 405,079 | 0.00074 | 0.00174 |
| 120.0 | 107.175 | 0 | 284,692 | 391,867 | 0.00072 | 0.00246 |
| 130.0 | 448,599 | 200,612 | 815,285 | 1,464,496 | 0.00269 | 0.00515 |
| 140.0 | 894,823 | 329.752 | 189,795 | 1,414,369 | 0.00259 | 0.00774 |
| 150.0 | 1,292,845 | 361,846 | 946,671 | 2,601,362 | 0.00477 | 0.01251 |
| 160.0 | 568,658 | 431,971 | 379,589 | 1,380,218 | 0.00253 | 0.01504 |
| 170.0 | 719,397 | 398,873 | 94,897 | 1,213,168 | 0.00223 | 0.01727 |
| 180.0 | 1,861,455 | 487,549 | 0 | 2,349,004 | 0.00431 | 0.02158 |
| 190.0 | 657,111 | 866,159 | 0 | 1,523,270 | 0.00279 | 0.02437 |
| 200.0 | 832,497 | 213,678 | 0 | 1,046,175 | 0.00192 | 0.02629 |
| 210.0 | 956,635 | 458,562 | 0 | 1,415,197 | 0.00260 | 0.02888 |
| 220.0 | 752,123 | 1,016,083 | 0 | 1,768,207 | 0.00324 | 0.03213 |
| 230.0 | 1,297,453 | 1,145,890 | 0 | 2,443,343 | 0.00448 | 0.03661 |
| 240.0 | 1,364,875 | 2,268,494 | 0 | 3,633,368 | 0.00666 | 0.04327 |
| 250.0 | 1,895,899 | 2,402,134 | 0 | 4,298,033 | 0.00788 | 0.05116 |
| 260.0 | 1,885,441 | 2,765,824 | 0 | 4,651,265 | 0.00853 | 0.05969 |
| 270.0 | 3,272,901 | 1,871,707 | 0 | 5,144,608 | 0.00944 | 0.06912 |
| 280.0 | 3,650,571 | 3,241,506 | 0 | 6,892,077 | 0.01264 | 0.08176 |
| 290.0 | 2,516,044 | 1,883,328 | 0 | 4,399,371 | 0.00807 | 0.08983 |
| 300.0 | 3,932,124 | 3,791,443 | 0 | 7,723,567 | 0.01417 | 0.10400 |
| 310.0 | 3,270,290 | 3,994, 174 | 127,653 | 7,392,116 | 0.01356 | 0.11756 |
| 320.0 | 4,143,701 | 3,371,627 | 0 | 7,515,328 | 0.01378 | 0.13134 |
| 330.0 | 3,642,617 | 5,886,358 | 0 | 9,528,975 | 0.01748 | 0.14882 |
| 340.0 | 5,549,128 | 4,628, 150 | 0 | 10,177,278 | 0.01867 | 0.16749 |
| 350.0 | 6,436,728 | 7,924,765 | 0 | 14,361,493 | 0.02634 | 0.19383 |
| 360.0 | 5,953,711 | 5,066,717 | 127,653 | 11,148,081 | 0.02045 | 0.21427 |
| 370.0 | 5,753,399 | 4,359,982 | 0 | 10,113,381 | 0.01855 | 0.23282 |
| 380.0 | 4,589,503 | 6,523,885 | 0 | 11,113,388 | 0.02038 | 0.25321 |
| 390.0 | 3,707,593 | 3,982,459 | 0 | 7,690,052 | 0.01410 | 0.26731 |
| 400.0 | 5,291,694 | 4,118,938 | 0 | 9,410,632 | 0.01726 | 0.28457 |
| 410.0 | 4,373,328 | 4,786,155 | 0 | 9,159,483 | 0.01680 | 0.30137 |
| 420.0 | 7,728,659 | 4,633,739 | 127,653 | 12,490,050 | 0.02291 | 0.32428 |
| 430.0 | 5,947,088 | 5,853,681 | 127,653 | 11,928,422 | 0.02188 | 0.34616 |
| 440.0 | 4,960,259 | 5,750,706 | 0 | 10,710,965 | 0.01965 | 0.36580 |
| 450.0 | 8,393,451 | 8,407,944 | 0 | 16,801,396 | 0.03082 | 0.39662 |
| 460.0 | 6,656,624 | 7,820,883 | 0 | 14,477,508 | 0.02655 | 0.42317 |
| 470.0 | 7,970,692 | 7,354,523 | 28,774 | 15,353,989 | 0.02816 | 0.45133 |
| 480.0 | 8,690,616 | 5,753,544 | 0 | 14,444,161 | 0.02649 | 0.47783 |
| 490.0 | 5,962,672 | 6,652,268 | 0 | 12,614,940 | 0.02314 | 0.50096 |
| 500.0 | 8,990,003 | 7,012,149 | 0 | 16,002,152 | 0.02935 | 0.53031 |
| 510.0 | 5,761,018 | 8,530,735 | 0 | 14,291,753 | 0.02621 | 0.55653 |
| 520.0 | 6,801,840 | 5,252,300 | 0 | 12,054,140 | 0.02211 | 0.57864 |
| 530.0 | 7,087,220 | 6,037,934 | 0 | 13,125,154 | 0.02407 | 0.60271 |
| 540.0 | 7,436,858 | 7,338,959 | 0 | 14,775,818 | 0.02710 | 0.62981 |

Table D. 3. -- Pacific cod (Cont.). Section d, population number estimates by sex and centineter interval for the overal l survey area.

| LENGTH(MM) | MALES | FEMALES | UNSEXED | TOTAL | PROPORTION | CUMULATIVE PROPORTION |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 550.0 | 7.906.497 | 5,481,156 | 28,663 | 13,416,316 | 0.02461 | 0.65442 |
| 560.0 | 5,950,028 | 6,442,216 | 28,774 | 12,421,018 | 0.02278 | 0.67720 |
| 570.0 | 5,676,487 | 6,003,740 | 28,663 | 11,708,890 | 0.02148 | 0.69867 |
| 580.0 | 6,060,011 | 6,782,790 | 0 | 12,842,801 | 0.02356 | 0.72223 |
| 590.0 | 5,681,330 | 4,937,762 | 28,663 | 10,647,755 | 0.01953 | 0.74176 |
| 600.0 | 6,202,981 | 5,361,539 | 28,663 | 11,593,183 | 0.02126 | 0.76302 |
| 610.0 | 4,367,560 | 4,656,901 | 0 | 9,024,462 | 0.01655 | 0.77957 |
| 620.0 | 4,592,387 | 6,189,203 | 0 | 10,781,591 | 0.01977 | 0.79935 |
| 630.0 | 3,634,327 | 5,105,957 | 0 | 8,740,284 | 0.01603 | 0.81538 |
| 640.0 | 3,387,664 | 3,243,424 | 57,634 | 6,688,723 | 0.01227 | 0.82765 |
| 650.0 | 2,366,983 | 4,561,649 | - 0 | 6,928,631 | 0.01271 | 0.84036 |
| 660.0 | 2,972,579 | 2,213,887 | 0 | 5,186,466 | 0.00951 | 0.84987 |
| 670.0 | 3,202,647 | 4,288,590 | 0 | 7.491,237 | 0.01374 | 0.86361 |
| 680.0 | 2,548,051 | 3,029,798 | 0 | 5,577,849 | 0.01023 | 0.87384 |
| 690.0 | 2,935,729 | 2,764,753 | 0 | 5,700,481 | 0.01046 | 0.88430 |
| 700.0 | 1,788,283 | 2;646,668 | 28,663 | 4,463,613 | 0.00819 | 0.89248 |
| 710.0 | 4,501,762 | 1,781,482 | 0 | 6,283,244 | 0.01152 | 0.90401 |
| 720.0 | 1,767,079 | 2,810,506 | - ${ }^{0}$ | 4,577,585 | 0.00840 | 0.91240 |
| 730.0 | 2,574,455 | 1,939,906 | 57.326 | 4,571,687 | 0.00839 | 0.92079 |
| 740.0 | 1,779,294 | 1,382,148 | 0 | 3,161,443 | 0.00580 | 0.92659 |
| 750.0 | 2,137,825 | 2,104,766 | 0 | 4,242,591 | 0.00778 | 0.93437 |
| 760.0 | 1,752,744 | 2,036,933 | 0 | 3,789,677 | 0.00695 | 0.94132 |
| 770.0 | 1,399,147 | 1,437,240 | 0 | 2,836,387 | 0.00520 | 0.94652 |
| 780.0 | 753,350 | 1,604,343 | 0 | 2,357,693 | 0.00432 | 0.95084 |
| 790.0 | 802,306 | 2,380,997 | 0 | 3,183,303 | 0.00584 | 0.95668 |
| 800.0 | 1,980,364 | 2,059,001 | 0 | 4,039,366 | 0.00741 | 0.96409 |
| 810.0 | 1,692,712 | 1,770,489 | 0 | 3,463,201 | 0.00635 | 0.97044 |
| 820.0 | 597,428 | 2,175,280 | 28,774 | 2,801,482 | 0.00514 | 0.97558 |
| 830.0 | 689,731 | 870,604 | 0 | 1,560,335 | 0.00286 | 0.97844 |
| 840.0 | 1,101,697 | 1,046,631 | 0 | 2,148,328 | 0.00394 | 0.98238 |
| 850.0 | 389,863 | 479,358 | 0 | 869,221 | 0.00159 | 0.98398 |
| 860.0 | 635,485 | 1,104,589 | 0 | 1,740,074 | 0.00319 | 0.98717 |
| 870.0 | 459.832 | 597,526 | 0 | 1,057,357 | 0.00194 | 0.98911 |
| 880.0 | 485,577 | 109,298 | 0 | , 594,875 | 0.00109 | 0.99020 |
| 890.0 | 523,970 | 504,796 | 0 | 1,028,766 | 0.00189 | 0.99209 |
| 900.0 | - 0 | 190,145 | 0 | 190,145 | 0.00035 | 0.99244 |
| 910.0 | 363,410 | 682,018 | 0 | 1,045,429 | 0.00192 | 0.99435 |
| 920.0 | 50,744 | 182,471 | 0 | 233,215 | 0.00043 | 0.99478 |
| 930.0 | 37,572 | 264,349 | 0 | 301,922 | 0.00055 | 0.99534 |
| 940.0 | 1,944 | 609,917 | 0 | 611,861 | 0.00112 | 0.99646 |
| 950.0 | 44,267 | 295,962 | 0 | 340, 230 | 0.00062 | 0.99708 |
| 980.0 | 28,440 | 225,195 | 0 | 253,634 | 0.00047 | 0.99755 |
| 970.0 | 26,809 | 28,440 | 0 | 55,249 | 0.00010 | 0.99765 |
| 980.0 | 33.866 | 204,187 | 0 | 238,053 | 0.00044 | 0.99808 |
| 990.0 | 1,944 | 444,331 | 0 | 446,276 176.142 | 0.00082 0.00032 | 0.99890 0.99923 |
| 1000.0 | 0 35,392 | 176,142 8,573 | 0 | 176,142 43,965 | 0.00032 0.00008 | 0.99923 |
| 1010.0 | 35,392 | 8,573 | 0 | 43,965 | 0.00008 | 0.99931 |

Table D. 3. -- Pacific cod (Cont.). Section d, population number estimates by sex and centineter length interval for the overall survey area.

| LENGTH(MM) | MALES | FEMALES | UNSEXED | TOTAL | PROPORTION | CUMULATIVE PROPORTION |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1020.0 | 0 | 152,242 | 0 | 152,242 | 0.00028 | 0.99959 |
| 1030.0 | 0 | 1,944 | 0 | 1,944 | 0.00000 | 0.99959 |
| 1050.0 | 0 | 17,054 | 0 | 17,054 | 0.00003 | 0.99962 |
| 1070.0 | 0 | 13,301 | 0 | 13,301 | 0.00002 | 0.99965 |
| 1080.0 | 0 | 1,944 | 0 | 1,944 | 0.00000 | 0.99965 |
| 1100.0 | 0 | 191,339 | 0 | 191,339 | 0.00035 | 1.00000 |
| TOTAL | 269,956,648 | 270,802,242 | 4,457,857 | 545,216,747 | | |

Table D.4.--Sabl efish. Section a, CPUE estinates by stratum

| STRATUH | AREA | SQ. MI. | SAMPLES | TOTAL HAULS | $\begin{aligned} & \text { HAULS } \\ & \text { HITH } \\ & \text { CATCH } \end{aligned}$ | HAULS WITH NUMS. | HAULS WITH $\mathrm{L}-\mathrm{F}$ | MEAN CPUE KG/HA | VARIANCE MEAN CPUE KG/HA | MEAN CPUE NO/HA | VARIANCE MEAN CPUE NO/HA |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 10 | | 22,704. | 2,627,943 | 58 | 0 | 0 | 0 | 0.00 | 0. | 0.00 | 0. |
| 20 | | 11,962. | 1,384,553 | 31 | 0 | 0 | 0 | 0.00 | 0. | 0.00 | 0. |
| 30 | | 27,559. | 3,189,999 | 66 | 0 | 0 | 0 | 0.00 | 0. | 0.00 | 0. |
| 31 | | 2,558. | 296,105 | 9 | 0 | 0 | 0 | 0.00 | 0. | 0.00 | 0. |
| SUBTOTAL | | 30,118. | 3,486,104 | 75 | 0 | 0 | 0 | 0.00 | 0. | 0.00 | 0. |
| 40 | | 18,281. | 2,116,073 | 44 | 0 | 0 | 0 | 0.00 | 0. | 0.00 | 0. |
| 41 | | 7,001. | 810,309 | 31 | 0 | 0 | 0 | 0.00 | 0. | 0.00 | 0. |
| 42 | | 6,154. | 712,328 | 21 | 0 | 0 | 0 | 0.00 | 0. | 0.00 | 0. |
| SUBTOTAL | | 31,436. | 3,638,710 | 96 | 0 | 0 | 0 | 0.00 | 0. | 0.00 | 0. |
| 50 | | 11,310. | 1,309,140 | 27 | 2 | 2 | 1 | 0.05 | .192216E-02 | 0.03 | .500368E-03 |
| 60 | | 25,704. | 2,975,204 | 60 | 1 | 1 | 1 | 0.01 | .218164E-03 | 0.01 | .350533E-04 |
| 61 | | 1,874. | 216,948 | 7 | 0 | 0 | 0 | 0.00 | 0. | 0.00 | 0. |
| SUBTOTAL | | 27,578. | 3,192,153 | 67 | 1 | 1 | 1 | 0.01 | .189517E-03 | 0.01 | . $304505 \mathrm{E}-04$ |
| 71 | | 21,233. | 2,457,710 | 25 | 0 | 0 | 0 | 0.00 | 0. | 0.00 | 0. |
| 72 | | 12,215. | 1,413,893 | 15 | 0 | 0 | 0 | 0.00 | 0. | 0.00 | 0. |
| 73 | | 5,494. | 635,915 | 7 | 0 | 0 | 0 | 0.00 | 0. | 0.00 | 0. |
| 74 | | 6,202. | 717,847 | 13 | 0 | 0 | 0 | 0.00 | 0. | 0.00 | 0. |
| SUBTOTAL | | 23,911. | 2,767,656 | 35 | 0 | 0 | 0 | 0.00 | 0. | 0.00 | 0. |
| 81 | | 2,270. | 262,712 | 47 | 44 | 44 | 39 | 19.74 | . $545826 E+02$ | 7.11 | . $532391 \mathrm{E}+01$ |
| 82 | | 1,646. | 190,552 | 28 | 21 | 21 | 19 | 7.59 | -112997E+02 | 2.30 | . $985030 \mathrm{E}+00$ |
| 83 | | 1,281. | 148,224 | 31 | 31 | 31 | 28 | 15.08 | . $220945 \mathrm{E}+01$ | 5.69 | . $326868 \mathrm{E}+00$ |
| 84 | | 965. | 111,735 | 27 | 26 | 26 | 25 | 12.63 | .147414E+02 | 4.17 | . $151353 \mathrm{E}+01$ |
| 100 | | 45,144. | 5,225,365 | 60 | 0 | 0 | 0 | 0.00 | 0. | 0.00 | 0. |
| 200 | | 135,107. | 15,638,602 | 354 | 3 | 3 | 2 | 0.01 | .213662E-04 | 0.00 | . 477516E-05 |
| 300 | | 180, 250. | 20,863,967 | 414 | 3 | 3 | 2 | 0.01 | . $120041 \mathrm{E}-04$ | 0.00 | .268281E-05 |
| 400 | | 6,162. | 713,222 | 133 | 122 | 122 | 111 | 14.41 | .866945E+01 | 5.07 | . $843913 \mathrm{E}+00$ |
| TOTAL | | 186,412. | 21,577,189 | 547 | 125 | 125 | 113 | 0.48 | .948345E-02 | 0.17 | .924566E-03 |

Table D. 4. -- Sabl efish (Cont.). Section b, bi onass estimated by stratum

Table D. 4. - Sabl efish (Cont). Section c, population number estinates by subarea.

| Stratum | MEAN | WT KG | POPULATION | VARIANCE POPULATION | $\begin{aligned} & \text { METHOD } \\ & \text { USED } \end{aligned}$ | EFF. DEG. FREEDOM | 95\% CONFIDENCE LIMITS LOWER | - POPULATION UPPER |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 10 | | 0.000 | 0 | 0. | 1 | 0.00 | 0 | 0 |
| 20 | | 0.000 | 0 | 0. | 1 | 0.00 | 0 | 0 |
| 30 | | 0.000 | 0 | 0. | 1 | 0.00 | 0 | 0 |
| 31 | | 0.000 | 0 | 0. | 1 | 0.00 | 0 | 0 |
| SUBTOTAL | | 0.000 | 0 | 0. | | 0.00 | 0 | 0 |
| 40 | | 0.000 | 0 | 0. | 1 | 0.00 | 0 | 0 |
| 41 | | 0.000 | 0 | 0. | 1 | 0.00 | 0 | 0 |
| 42 | | 0.000 | 0 | 0. | 1 | 0.00 | 0 | 0 |
| SUBTOTAL | | 0.000 | 0 | 0. | | 0.00 | 0 | 0 |
| 50 | | 1.605 | 123,774 | . $752980300 \mathrm{E}+10$ | 1 | 26.00 | 0 | 302,183 |
| 60 | | 2.495 | 52,197 | .272448146E+10 | 1 | 59.00 | 0 | 156,645 |
| 61 | | 0.000 | 0 | 0. | 1 | 0.00 | 0 | 156,645 |
| SUBTOTAL | | 2.495 | 52,197 | .272448146E+10 | | 59.00 | 0 | 156,645 |
| 71 | | 0.000 | 0 | 0. | 1 | 0.00 | 0 | 0 |
| 72 | | 0.000 | 0 | 0. | 1 | 0.00 | 0 | 0 |
| 73 | | 0.000 | 0 | 0. | 1 | 0.00 | 0 | 0 |
| 74 | | 0.000 | 0 | 0. | 1 | 0.00 | 0 | 0 |
| SUBTOTAL | | 0.000 | 0 | 0. | | 0.00 | 0 | 0 |
| 81 | | 2.778 | 5,531.189 | . $322635351 E+13$ | 1 | 46.00 | 1,912,374 | 9.150.004 |
| 82 | | 3.295 | 1,300,669 | . $314049728 \mathrm{E}+12$ | 1 | 27.00 | 150,725 | 2,450,613 |
| 83 | | 2.649 | 2,499,749 | . $630564944 \mathrm{E}+11$ | 1 | 30.00 | 1,986,982 | 3,012,517 |
| 84 | | 3.028 | 1,381,202 | .165917124E+12 | 1 | 26.00 | 543,733 | 2,218,671 |
| 100 | | 0.000 | 0 | 0. | 1 | 0.00 | 0 | 0 |
| 200 | | 1.869 | 175,971 | . $102542845 \mathrm{E}+11$ | 1 | 45.59 | 0 | 379,986 |
| 300 | | 1.869 | 175,971 | . $102542845 \mathrm{E}+11$ | 1 | 45.59 | 0 | 379,986 |
| 400 | | 2.843 | 10,712,810 | . $376937686 E+13$ | 1 | 61.47 | 6,830,480 | 14,595,139 |
| TOTAL | | 2.827 | 10,888,781 | $.377963114 \mathrm{E}+13$ | | 61.81 | 7,001,822 | 14,775,739 |

Table D. 4. - Sabl efish (Cont.). Section d, popul ation number estimates by sex and centineter Length interval for the overall survey area.

| LENGTH(MM) | MALES | FEMALES | UNSEXED | TOTAL | PROPORTION | CUMULATIVE PROPORTION |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 420.0 | 1,448 | 0 | 0 | 1,448 | 0.00013 | 0.00013 |
| 450.0 | 1,448 | 0 | 0 | 1,448 | 0.00013 | 0.00027 |
| 460.0 | 0 | 1,631 | 0 | 1,631 | 0.00015 | 0.00042 |
| 480.0 | 7.086 | 0 | 0 | 7,086 | 0.00065 | 0.00107 |
| 490.0 | 4,265 | 1,631 | 0 | 5,896 | 0.00054 | 0.00161 |
| 500.0 | 9,385 | 2,319 | 0 | 11,704 | 0.00107 | 0.00268 |
| 510.0 | 3,003 | 3,854 | 0 | 6,857 | 0.00063 | 0.00331 |
| 520.0 | 14,017 | 2,739 | 0 | 16,756 | 0.00154 | 0.00485 |
| 530.0 | 61,662 | 39,097 | 0 | 100,758 | 0.00925 | 0.01410 |
| 540.0 | 73,732 | 41,462 | 0 | 115,194 | 0.01058 | 0.02468 |
| 550.0 | 149,818 | 84,403 | 0 | 234,221 | 0.02151 | 0.04619 |
| 560.0 | 182,755 | 112,855 | 0 | 295,610 | 0.02715 | 0.07334 |
| 570.0 | 325,210 | 129,866 | 0 | 455,077 | 0.04179 | 0.11514 |
| 580.0 | 303,566 | 294,710 | 0 | 598,276 | 0.05494 | 0.17008 |
| 590.0 | 455,181 | 399,956 | 0 | 855,137 | 0.07853 | 0.24861 |
| 600.0 | 425,737 | 291,392 | 0 | 717.129 | 0.06586 | 0.31447 |
| 610.0 | 504,563 | 414,862 | 0 | 919.425 | 0.08444 | 0.39891 |
| 620.0 | 422,621 | 347,508 | 0 | 770, 129 | 0.07073 | 0.46964 |
| 630.0 | 438,469 | 300,353 | 0 | 738,822 | 0.06785 | 0.53749 |
| 640.0 | 355,811 | 442,281 | 0 | 798,092 | 0.07329 | 0.61078 |
| 650.0 | 352,041 | 391,786 | 0 | 743,827 | 0.06831 | 0.67910 |
| 660.0 | 254,559 | 387,372 | 0 | 641,931 | 0.05895 | 0.73805 |
| 670.0 | 288,276 | 329,429 | 0 | 617,705 | 0.05673 | 0.79478 |
| 680.0 | 178,722 | 292,604 | 0 | 471,326 | 0.04329 | 0.83806 |
| 690.0 | 169,458 | 228,584 | 0 | 398,042 | 0.03656 | 0.87462 |
| 700.0 | 124,540 | 208,110 | 0 | 332,650 | 0.03055 | 0.90517 |
| 710.0 | 91,669 | 245,858 | 0 | 337,527 | 0.03100 | 0.93617 |
| 720.0 | 32,437 | 143,856 | 0 | 176,293 | 0.01619 | 0.95236 |
| 730.0 | 33,298 | 110,030 | 0 | 143,328 | 0.01316 | 0.96552 |
| 740.0 | 22,731 | 112,505 | 0 | 135,235 | 0.01242 | 0.97794 |
| 750.0 | 3,519 | 78,342 | 0 | 81,861 | 0.00752 | 0.98546 |
| 760.0 | 0 | 44,770 | 0 | 44,770 | 0.00411 | 0.98957 |
| 770.0 | 0 | 33.888 | 0 | 33,888 19 | 0.00311 0.00183 | 0.99268 |
| 780.0 | - 0 | 19,922 | 0 | 19,922 | 0.00183 | 0.99451 |
| 790.0 | 2,207 | 20,261 | 0 | 22,468 | 0.00206 | 0.99657 |
| 800.0 | 1,308 | 13,895 | 0 | 15,204 | 0.00140 | 0.99797 |
| 810.0 | 0 | 2,155 | 0 | 2,155 | 0.00020 | 0.99817 |
| 820.0 | 0 0 | 8,129 5,505 | 0 | 8.129 5.505 | 0.00075 0.00051 | 0.99891 0.99942 |
| 830.0 | 0 | 5,505 1,136 | 0 | 5,505 1,136 | 0.00051 0.00010 | 0.99942 0.99952 |
| 840.0 860.0 | 0 | 1,136 3,659 | 0 | 1,136 3,659 | 0.00010 0.00034 | 0.99952 0.99986 |
| 870.0 | 0 | 1,526 | 0 | 1,526 | 0.00014 | 1.00000 |
| TOTAL | 5,294,540 | 5,594,241 | 0 | 10,888,781 | | |

Table D. 5.-- Pacific Ocean perch. Section a, CPUE estinates by stratum

| STRATUM | AREA SO. MI. | SAMPLES | TOTAL HAULS | HAULS WITH
 CATCH | HAULS WITH
 NUMS. | $\begin{aligned} & \text { HAULS } \\ & \text { WITH } \\ & L=F \end{aligned}$ | MEAN CPUE KG/HA | VARIANCE MEAN CPUE KG/HA | MEAN CPUE
 NO/HA | VARIANCE MEAN CPUE NO/HA |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 10 | 22,704. | 2,627,943 | 58 | 0 | 0 | 0 | 0.00 | 0. | 0.00 | 0. |
| 20 | 11,962. | 1,384,553 | 31 | 0 | 0 | 0 | 0.00 | 0. | 0.00 | 0. |
| 30 | 27,559. | 3,189,999 | 66 | 0 | 0 | 0 | 0.00 | 0. | 0.00 | 0. |
| 31 | 2,558. | 296,105 | 9 | 0 | 0 | 0 | 0.00 | 0. | 0.00 | 0. |
| SUBTOTAL | 30,118. | 3,486,104 | 75 | 0 | 0 | 0 | 0.00 | 0. | 0.00 | 0. |
| 40 | 18,281. | 2,116,073 | 44 | 0 | 0 | 0 | 0.00 | 0. | 0.00 | 0. |
| 41 | 7,001. | 810,309 | 31 | 0 | 0 | 0 | 0.00 | 0. | 0.00 | 0. |
| 42 | 6,154. | 712,328 | 21 | 0 | 0 | 0 | 0.00 | 0. | 0.00 | 0. |
| SUBTOTAL | 31,436. | 3,638,710 | 96 | 0 | 0 | 0 | 0.00 | 0. | 0.00 | 0. |
| 50 | 11,310. | 1,309,140 | 27 | 2 | 2 | 1 | 0.14 | . $162872 \mathrm{E}-01$ | 0.39 | . $143568 E+00$ |
| 60 | 25,704. | 2,975,204 | 60 | 1 | 1 | 0 | 0.00 | .101701E-06 | 0.00 | .123576E-04 |
| 61 | 1,874. | 216,948 | 7 | 0 | 0 | 0 | 0.00 | 0. | 0.00 | 0. |
| SUBTOTAL | 27,578. | 3,192,153 | 67 | 1 | 1 | 0 | 0.00 | .883467E-07 | 0.00 | . 107350E-04 |
| 71 | 21,233. | 2,457,710 | 25 | 0 | 0 | 0 | 0.00 | 0. | 0.00 | 0. |
| 72 | 12,215. | 1,413,893 | 15 | 0 | 0 | 0 | 0.00 | 0. | 0.00 | 0. |
| 73 | 5.494. | 635,915 | 7 | 0 | 0 | 0 | 0.00 | 0. | 0.00 | 0. |
| 74 | 6,202. | 717,847 | 13 | 0 | 0 | 0 | 0.00 | 0. | 0.00 | 0. |
| SUBTOTAL | 23,911. | 2,767,656 | 35 | 0 | 0 | 0 | 0.00 | 0. | 0.00 | 0. |
| 81 | 2,270. | 262,712 | 47 | 32 | 32 | 29 | 3.31 | . $271208 \mathrm{E}+01$ | 3.90 | |
| 82 | 1,646. | 190,552 | 28 | 24 | 24 | 23 | 46.21 | . $277782 \mathrm{E}+03$ | 72.95 | $.625269 \mathrm{E}+03$ |
| 83 | 1,281. | 148,224 | 31 | 8 | 8 | 7 | 0.32 | .266876E-01 | 0.38 | . $365625 \mathrm{E}-01$ |
| 84 | 965. | 111.735 | 27 | 4 | 4 | 2 | 0.23 | . $325214 \mathrm{E}-01$ | 0.40 | .950662E-01 |
| 100 | 45,144. | 5,225,365 | 60 | 0 | 0 | 0 | 0.00 | 0. | 0.00 | 0. |
| 200 | 135,107. | 15,638,602 | 354 | 3 | 3 | 1 | 0.01 | .114140E-03 | 0.03 | . 100653E-02 |
| 300 | 180,250. | 20,863,967 | 414 | 3 | 3 | 1 | 0.01 | .641267E-04 | 0.03 | .565494E-03 |
| 400 | 6,162. | 713,222 | 133 | 68 | 68 | 61 | 13.67 | . 201980E+02 | 21.07 | $.451400 \mathrm{E}+02$ |
| total | 186,412. | 21,577,189 | 547 | 71 | 71 | 62 | 0.46 | .221282E-01 | 0.72 | .498485E-01 |

Table D. 5. -- Pacific Ocean perch (Cont). Section b, bi onass estimates by stratum

Table D.5.= Pacific Ocean perch (Cont). Section c, population number estimates by stratum

| STRATUM | MEAN | WT KG | POPULATION | VARIANCE POPULATION | METHOD USED | EFF. DEG. FREEDOM | 95\% CONFIDENCE LIMIIS LOWER | - POPULATION UPPER |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 10 | | 0.000 | 0 | 0. | 1 | 0.00 | 0 | 0 |
| 20 | | 0.000 | 0 | 0. | 1 | 0.00 | 0 | 0 |
| 30 | | 0.000 | 0 | 0. | 1 | 0.00 | 0 | 0 |
| 31 | | 0.000 | 0 | 0. | 1 | 0.00 | 0 | 0 |
| SUBTOTAL | | 0.000 | 0 | 0. | | 0.00 | 0 | 0 |
| 40 | | 0.000 | 0 | 0. | 1 | 0.00 | 0 | 0 |
| - 41 | | 0.000 | 0 | 0. | 1 | 0.00 | 0 | 0 |
| 42 | | 0.000 | 0 | 0. | 1 | 0.00 | 0 | 0 |
| SUBTOTAL | | 0.000 | 0 | 0. | | 0.00 | 0 | 0 |
| 50 | | 0.358 | 1,530,074 | . $216048153 \mathrm{E}+13$ | 1 | 26.00 | 0 | 4,552,101 |
| 60 | | 0.091 | 30,992 | .960486138E+09 | 1 | 59.00 | 0 | |
| 61 | | 0.000 | 0 | 0. | 1 | 0.00 | 0 | 0 |
| SUBTOTAL | | 0.091 | 30,992 | .960486138E+09 | | 59.00 | 0 | 93,008 |
| 71. | | 0.000 | 0 | 0. | 1 | 0.00 | 0 | 0 |
| 72 | | 0.000 | 0 | 0. | 1 | 0.00 | 0 | 0 |
| 73 | | 0.000 | 0 | 0. | 1 | 0.00 | 0 | 0 |
| 74 | | 0.000 | 0 | 0. | 1 | 0.00 | 0 | 0 |
| SUBTOTAL | | 0.000 | 0 | 0. | | 0.00 | 0 | 0 |
| 81 | | 0.848 | 3,039,183 | . $225241245 \mathrm{E}+13$ | 1 | 46.00 | 15,513 | 6,062,853 |
| 82 | | 0.633 | 41,193,247 | . $199349888 \mathrm{E}+15$ | 1 | 27.00 | 12,220,788 | 70,165,706 |
| 83 | | 0.833 | 167,079 | . $705330889 \mathrm{E}+10$ | 1 | 30.00 | 0 | - 338,575 |
| 84 | | 0.571 | 133,489 | . $104214019 \mathrm{E}+11$ | 1 | 26.00 | 0 | 343,376 |
| 100 | | 0.000 | 0 | 0. | 1 | 0.00 | 0 | 0 |
| 200 | | 0.353 | 1,561,066 | . $216144201 \mathrm{E}+13$ | 1 | 26.02 | 0 | 4,583,765 |
| 300 | | 0.353 | 1,561,066 | .216144201E+13 | 1 | 26.02 | 0 | 4,583,765 |
| 400 | | 0.649 | 44,532,998 | .201619775E+15 | 1 | 27.62 | 15,452,857 | 73,613,140 |
| total | | 0.639 | 46,094,064 | .203781217E+15 | | 28.21 | 16,858,463 | 75,329,665 |

Table D. 5.-- Pacfic ocean perch (Cont.). Section d, population number estimates by sex and centineter length interval for the overall survey

| LENGTH(MM) | MALES | FEMALES | UNSEXED | TOTAL | PROPORTION | CUMULATIVE PROPORTION |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 70.0 | 23,843 | 0 | 0 | 23,843 | 0.00052 | 0.00052 |
| 140.0 | 39,611 | 0 | 0 | 39,611 | 0.00086 | 0.00138 |
| 160.0 | 15,767 | 0 | 0 | 15,767 | 0.00034 | 0.00172 |
| 170.0 | 15,767 | 0 | 0 | 15,767 | 0.00034 | 0.00206 |
| 190.0 | 47,301 | 31,534 | 0 | 78,836 | 0.00171 | 0.00377 |
| 200.0 | 134,496 | 58,088 | 0 | 192,583 | 0.00418 | 0.00795 |
| 210.0 | 142,282 | 129,106 | 0 | 271,388 | 0.00589 | 0.01384 |
| 220.0 | 36,206 | 361,898 | 0 | 398, 104 | 0.00864 | 0.02247 |
| 230.0 | 47,301 | 15,767 | 0 | 63,068 | 0.00137 | 0.02384 |
| 240.0 | 0 | 92,876 | 0 | 92,876 | 0.00201 | 0.02586 |
| 250.0 | 23,843 | 72,827 | 0 | 96,671 | 0.00210 | 0.02795 |
| 260.0 | 40,028 | 93,544 | 0 | 133,572 | 0.00290 | 0.03085 |
| 270.0 | 21,881 | 76,334 | 0 | 98,215 | 0.00213 | 0.03298 |
| 280.0 | 76,707 | 122,133 | 0 | 198,841 | 0.00431 | 0.03730 |
| 290.0 | 394,796 | 322,776 | 0 | 717,571 | 0.01557 | 0.05286 |
| 300.0 | 1,103,611 | 751,456 | 0 | 1.855,066 | 0.04025 | 0.09311 |
| 310.0 | 1,803,854 | 1,099,569 | 0 | 2,903,423 | 0.06299 | 0.15610 |
| 320.0 | 2,436,546 | 1,204,694 | 0 | 3,641,240 | 0.07900 | 0.23509 |
| 330.0 | 3,349,668 | 1,599,760 | 0 | 4,949,428 | 0.10738 | 0.34247 |
| 340.0 | 3,986,706 | 1,949,388 | 0 | 5,936,094 | 0.12878 | 0.47125 |
| 350.0 | 4,046,823 | 2,331,444 | 0 | 6,378, 267 | 0.13838 | 0.60963 |
| 360.0 | 2,741,821 | 2,869,872 | 0 | 5,611,693 | 0.12174 | 0.73137 |
| 370.0 | 1,812,470 | 2,499,206 | 0 | 4,311,676 | 0.09354 | 0.82491 |
| 380.0 | 892,867 | 1,836,725 | 0 | 2,729,592 | 0.05922 | 0.88413 |
| 390.0 | 700,498 | 809,366 | 0 | 1,509,865 | 0.03276 | 0.91689 |
| 400.0 | 580,723 | 566,199 | 0 | 1,146,922 | 0.02488 | 0.94177 |
| 410.0 | 226,548 | 445,123 | 0 | 671,672 | 0.01457 | 0.95634 |
| 420.0 | 126,379 | 445,666 | 0 | 572,044 | 0.01241 | 0.96875 |
| 430.0 | 35,455 | 396,719 | 0 | 432,175 | 0.00938 | 0.97813 |
| 440.0 | 53,761 | 362,998 | 0 | 416,758 | 0.00904 | 0.98717 |
| 450.0 | 49.376 | 322,510 | 0 | 371,886 | 0.00807 | 0.99524 |
| 460.0 | 11,560 | 117,494 | 0 | 129,055 | 0.00280 | 0.99804 |
| 470.0 | 0 | 43,736 | 0 | 43,736 | 0.00095 | 0.99899 |
| 490.0 | 0 | 15,767 | 0 | 15,767 | 0.00034 | 0.99933 |
| TOTAL | 25,018,498 | 21,044,575 | 0 | 46,063,072 | | |

Table D. 6. --Shortraker rockfish. Section a, CPUE estimates by stratum

| STRATUM | AREA SO. MI. | SAMPLES | TOTAL HAULS | haULS WITH CATCH | HAULS HITH NUMS. | HAULS
 WITH
 L-F | MEAN CPUE KG/HA | VARIANCE MEAN CPUE KG/HA | MEAN CPUE NO/HA | VARIANCE MEAN CPUE NO/HA |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 81 | 2,270. | 262,712 | 34 | 6 | 6 | 6 | 0.73 | . $129693 \mathrm{E}+00$ | 0.34 | . 301730E-01 |
| 82 | 1,646. | 190,552 | 23 | 1 | 1 | 1 | 0.08 | .573565E-02 | 0.02 | . $409587 \mathrm{E}-03$ |
| 83 | 1,281. | 148,224 | 26 | 4 | 4 | 4 | 1.32 | . $105746 \mathrm{E}+01$ | 0.31 | .545366E-01 |
| 84 | 965. | 111,735 | 17 | 1 | 1 | 1 | 0.22 | .473524E-09 | 0.23 | .536382E-01 |
| TOTAL | 6,162. | 713,222 | 100 | 12 | 12 | 12 | 0.60 | .648402E-01 | 0.23 | .779493E-02 |

Table D-6.--Shortraker rockfish (Cont.). Section b, biomass estimate by stratum.

Table D-6.--Shortraker rockfish (Cont.). Section c, population number estimates by stratum.

| STRATUM | MEAN | WT KG | POPULATION | VARIANCE POPULATION | METHOD USED | EFF. DEG. FREEDOM | 95\% CONFIDENCE LIMITS LOWER | - POPULATION UPPER |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 81 | | 2.148 | 263,433 | . $182851747 E+11$ | 1 | 33.00 | 0 | 538,705 |
| 82 | | 3.742 | 11,427 | . $130585565 \mathrm{E}+09$ | 1 | 22.00 | 0 | 35,128 |
| 83 | | 4.193 | 138,101 | . $105207066 \mathrm{E}+11$ | 1 | 25.00 | 0 | 349,396 |
| 84 | | 0.940 | 76,681 | . $587994948 \mathrm{E}+10$ | 1 | 16.00 | 0 | 239,244 |
| rotal | | 2.573 | 489,642 | . $348164164 \mathrm{E}+11$ | | 72.50 | 117,205 | 862,079 |

| LENGTH(MM) | MALES | females | UNSEXED | total | PROPORTION | CUMULATIVE
 PROPORTION |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 110.0 | 10,770 | 0 | 0 | 10,770 | 0.02202 | 0.02202 |
| 120.0 | 5,477 | 0 | 0 | 5,477 | 0.01121 | 0.03323 |
| 150.0 | 5,766 | 0 | 0 | 5,766 | 0.01178 | 0.04502 |
| 200.0 | 0 | 5,292 | 0 | 5.292 | 0.01080 | 0.05582 |
| 210.0 | 5,766 | 10,337 | 0 | 16,103 | 0.03291 | 0.08873 |
| 230.0 | \% 0 | 4,860 | 0 | 4,860 | 0.00991 | 0.09863 |
| 240.0 | 5,766 | . 0 | 0 | 5.766 | 0.01178 | 0.11042 |
| 250.0 | 9,669 | 5,766 | 0 | 15,435 | 0.03156 | 0.14198 |
| 260.0 | 5,477 | 0 | 0 | 5,477 | 0.01121 | 0.15320 |
| 270.0 | 4,860 | 0 | 0 | 4,860 | 0.00991 | 0.16311 |
| 280.0 | 10,152 | 5.292 | 0 | 15,444 | 0.03151 | 0.19462 |
| 290.0 | 4,860 | 0 | 0 | 4,860 | 0.00991 | 0.20453 |
| 300.0 | 4,860 | 5.477 | 0 | 10,337 | 0.02112 | 0.22565 |
| 310.0 | 0 | 4,880 | 0 | 4,860 | 0.00991 | 0.23556 |
| 320.0 | 0 | 16,103 | 0 | 16,103 | 0.03291 | 0.26847 |
| 330.0 | 0 | 10,152 | 0 | 10,152 | 0.02071 | 0.28918 |
| 340.0 | 4,860 | 4,860 | 0 | 9,719 | 0.01982 | 0.30899 |
| 360.0 | 9,382 | 0 | 0 | 9,382 | 0.01918 | 0.32818 |
| 370.0 | + 0 | 15,278 | 0 | 15,278 | 0.03117 | 0.35935 |
| 380.0 | 4,192 | - 0 | 0 | 4.192 | 0.00857 | 0.36792 |
| 390.0 | , 0 | 10,626 | 0 | 10,626 | 0.02169 | 0.38961 |
| 400.0 | 10,626 | 0 | 0 | 10,626 | 0.02169 | 0.41130 |
| 410.0 | 5,477 | 9,719 | 0 | 15,196 | 0.03103 | 0.44233 |
| 420.0 | 5,477 | 9.464 | 0 | 14,941 | 0.03054 | 0.47287 |
| 440.0 | 3,905 | 5,559 | 0 | 9,464 | 0.01933 | 0.49220 |
| 450.0 | 14,242 | 0 | 0 | 14,242 | 0.02909 | 0.52129 |
| 460.0 | 5.766 | 0 | 0 | 5,766 | 0.01178 | 0.53307 |
| 470.0 | 5,559 | 0 | 0 | 5,559 | 0.01135 | 0.54443 |
| 480.0 | 5,559 | 7,809 | 0 | 13,368 | 0.02730 | 0.57173 |
| 490.0 | 9,671 | \% 0 | 0 | 9,671 | 0.01976 | 0.59148 |
| 500.0 | 5,477 | 5.559 | 0 | 11,036 | 0.02257 | 0.61405 |
| 510.0 | 11,273 | 4.860 | 0 | 16,132 | 0.03293 | 0.64698 |
| 530.0 | 3,905 | 9.382 | 0 | 13,287 | 0.02715 | 0.67413 |
| 540.0 | 6,181 | 5,477 | 0 | 11,659 | 0.02386 | 0.69799 |
| 550.0 | - 0 | 4,192 | 0 | 4,192 | 0.00857 | 0.70656 |
| 560.0 | 9.464 | 3.905 | 0 | 13,368 | 0.02730 | 0.73385 |
| 570.0 580.0 | 7,809 | 3.905 7.809 | 0 | 11,714 7 | 0.02391 | 0.75777 |
| 580.0 590.0 | \% 0 | 7,809 0 | 0 0 | 7,809 11,714 | 0.02394 0.02391 | 0.77371 0.79762 |
| 600.0 | 4,192 | 3,905 | 0 | 8,097 | 0.01654 | 0.81415 |
| 610.0 | $\begin{array}{r}0 \\ \hline 0\end{array}$ | 4,192 | 0 | 4.192 | 0.00857 | 0.82272 |
| 620.0 | 3,905 | 0 | 0 | 3,905 | 0.00797 | 0.83069 |
| 630.0 | 0 | 3,905 | 0 | 3,905 | 0.00797 | 0.83866 |

Table D. 6.- Shortraker rockfish (Cont.). Section d, population estimates by sex and centineter length interval for the overall survey area.

| LENGTH(MM) | MALES | FEMALES | UNSEXED | TOTAL | PROPORTION | CUMULATIVE PROPORTION |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 640.0 | 3,905 | 0 | 0 | 3,905 | 0.00797 | 0.84663 |
| 650.0 | 4,860 | 0 | 0 | 4,860 | 0.00991 | 0.85654 |
| 660.0 | 3,905 | 0 | 0 | 3,905 | 0.00797 | 0.86451 |
| 700.0 | 0 | 5,714 | 0 | 5,714 | 0.01166 | 0.87617 |
| 730.0 | 3.905 | 3,905 | 0 | 7,809 | 0.01594 | 0.89211 |
| 750.0 | 4,860 | 0 | 0 | 4,860 | 0.00991 | 0.90202 |
| 760.0 | 4,852 | 0 | 0 | 4,860 | 0.00991 | 0.91193 |
| 770.0 | 0 | 5,766 | 0 | 5,766 | 0.01178 | 0.92372 |
| 780.0 | 0 3005 | 5,559 | 0 | 5,559 | 0.01135 | 0.93507 |
| 790.0 | 3.905 | 0 | 0 | 3,905 | 0.00797 | 0.94304 |
| 810.0 | 8,764 | 0 3005 | 0 | 8,764 | 0.01788 | 0.96092 |
| 860.0 | 0 5.766 | 3.905 | 0 | 3,905 | 0.00797 | 0.96889 |
| 870.0 900.0 | 5,766 | 3,905 | 0 | 9.671 | 0.01976 | 0.98865 |
| 900.0 | 0 | 5,559 | 0 | 5,559 | 0.01135 | 1.00000 |
| TOTAL | 266,786 | 222,856 | 0 | 489,642 | | |

Table D. 7. -- Rougheye rockfish. Section a, CPUE estimates by stratum

| STRATUM | AREA SQ. MI. | SAMPLES | tOTAL HAULS | $\begin{aligned} & \text { HAULS } \\ & \text { WITH } \\ & \text { CATCH } \end{aligned}$ | haULS WITH NUMS. | $\begin{aligned} & \text { HAULS } \\ & \text { WITH } \\ & L \cdot F \end{aligned}$ | MEAN CPUE KG/HA | VARIANCE MEAN CPUE KG/HA | MEAN CPUE NO/HA | VARIANCE MEAN CPUE NO/HA |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 81 | 2,270. | 262,712 | 34 | 10 | 10 | 9 | 0.37 | .213862E-01 | 0.46 | .576970E-01 |
| 82 | 1,646. | 190,552 | 23 | 7 | 7 | 7 | 0.61 | $.128596 E+00$ | 0.43 | . $488573 \mathrm{E}-01$ |
| 83 | 1,281. | 148,224 | 26 | 4 | 4 | 4 | 0.52 | . 130966E+00 | 0.68 | . $244130 \mathrm{E}+00$ |
| 84 | 965. | 111,735 | 17 | 1 | 1 | 1 | 0.04 | .165009E-02 | 0.15 | .222780E-01 |
| TOTAL | 6,162. | 713,222 | 100 | 22 | 22 | 21 | 0.41 | .177777E-01 | 0.45 | .224065E-01 |

Table D-7.--Rougheye rockfish (Cont.). Section b, biomass estimates by stratum.

Table D-7.--Rougheye rockfish (Cont.). Section c, population number estimates by stratum

Table D. 7.- Rougheye rockfish (Cont). Section d, population number estimates by sex and centineter length interval for the overall survey area.

| LENGTH(MM) | MALES | fEMALES | UNSEXED | TOTAL | PROPORTION | CUMULATIVE PROPORTION |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 120.0 | 4,933 | 4.192 | 0 | 9,125 | 0.00960 | 0.00960 |
| 130.0 | 0 | 4.933 | 0 | 4,933 | 0.00519 | 0.01478 |
| 140.0 | 4,933 | 0 | 0 | 4,933 | 0.00519 | 0.01996 |
| 150.0 | 4,192 | 0 | 0 | 4,192 | 0.00441 | 0.02437 |
| 160.0 | 4,933 | 0 | 0 | 4,933 | 0.00519 | 0.02956 |
| 170.0 | 26,865 | 9,866 | 0 | 36,731 | 0.03864 | 0.06818 |
| 180.0 | 6,033 | 4,933 | 0 | 10,966 | 0.01154 | 0.07972 |
| 190.0 | 8,151 | 13,317 | 0 | 21,467 | 0.02258 | 0.10230 |
| 200.0 | 4,192 | 14,058 | 0 | 18,250 | 0.01920 | 0.12150 |
| 210.0 | 23,182 | 15,158 | 0 | 38,341 | 0.04033 | 0.16182 |
| 220.0 | 22,441 | 13,317 | 0 | 35,758 | 0.03761 | 0.19943 |
| 230.0 | 23,932 | 8,384 | 0 | 32,316 | 0.03399 | 0.23342 |
| 240.0 | 13,326 | 18,267 | 0 | 31,593 | 0.03323 | 0.26669 |
| 250.0 | 10,225 | 0 | 0 | 10,225 | 0.01076 | 0.27746 |
| 260.0 | 8,151 | 4,942 | 0 | 13,093 | 0.01377 | 0.29124 |
| 280.0 | 0 | 8,847 | 0 | 8,847 | 0.00931 | 0.30055 |
| 290.0 | 9,805 | 8,097 | 0 | 17,901 | 0.01883 | 0.31937 |
| 300.0 | 4,192 | 0 | 0 | 4,192 | 0.00441 | 0.32379 |
| 310.0 | 4,872 | 3,959 | 0 | 8,831 | 0.00929 | 0.33307 |
| 320.0 | 10,068 | 0 | 0 | 10,068 | 0.01059 | 0.34366 |
| 330.0 | 4,933 | 9.781 | 0 | 14,713 | 0.01548 | 0.35914 |
| 340.0 | 8,833 | 9,296 | 0 | 18,137 | 0.01908 | 0.37820 |
| 350.0 | 4,641 | 15,971 | 6,275 | 26,887 | 0.02828 | 0.40651 |
| 360.0 | 8,097 | 4,942 | 0 | 13,038 | 0.01372 | 0.42023 |
| 370.0 | 5,345 | 0 | 6,275 | 11.620 | 0.01222 | 0.43246 |
| 380.0 | 15,632 | 15,283 | 0 | 30,915 | 0.03252 | 0.46498 |
| 390.0 | 24,526 | 11,768 | 0 | 36,294 | 0.03818 | 0.50317 |
| 400.0 | 9,063 | 12,288 | 0 | 21,352 | 0.02246 | 0.52563 |
| 410.0 | 25,897 | 22,450 | 6,275 | 54,622 | 0.05746 | 0.58311 |
| 420.0 | 36,402 | 27,127 | 0 | 63,528 | 0.06683 | 0.64992 |
| 430.0 | 19,030 | 32,100 | 0 | 51,130 | 0.05378 | 0.70372 |
| 440.0 | 37,477 | 19,662 | 0 | 57,139 | 0.06011 | 0.76381 |
| 450.0 | 16,237 | 21,489 | 6,275 | 44,001 | 0.04628 | 0.81009 |
| 460.0 | 18,868 | 26,638 | 0 | 45,506 | 0.04787 | 0.85792 |
| 470.0 | 17,141 | 20,872 | 0 | 38,013 | 0.03999 | 0.89791 |
| 480.0 | 0 | 10,705 | 6,275 | 16,979 | 0.01786 | 0.91578 |
| 490.0 | 4.933 | 16,360 | 0 | 21,293 | 0.02240 | 0.93816 |
| 500.0 | 5,714 | 5,264 | 6,275 | 17,252 | 0.01815 | 0.95632 |
| 510.0 | 5,714 | 3,905 | 0 | 9,618 | 0.01012 | 0.96644 |
| 520.0 | 5,714 | 12,681 | 0 | 18,395 | 0.01935 | 0.98578 |
| 530.0 | 0 | 3,905 | 0 | 3,905 | 0.00411 | 0.98988 |
| 570.0 | 5,714 | 0 | 0 | 5,714 | 0.00601 | 0.99589 |
| 670.0 | 0 | 3,905 | 0 | 3,905 | 0.00411 | 1.00000 |
| TOTAL | 474,336 | 438,668 | 37,648 | 950,652 | | |

| STRATUM | AREA | SQ. MI. | SAMPLES | TOTAL HAULS | hauls WITH CATCE | haUls WITB NUMS. | HAULS WITH L-F | MEAN CPUE KG/HA | VARIANCE MEAN CPUE KG/HA | MEAN CPUE NO/HA | VARIANCE MEAN CPUE NO/HA |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 10 | | 22,704. | 2,627,943 | 58 | 0 | 0 | 0 | 0.00 | 0. | 0.00 | 0. |
| 20 | | 11,962. | 1,384,553 | 31 | 0 | 0 | 0 | 0.00 | 0. | 0.00 | 0. |
| 30 | | 27,559. | 3,189.999 | 66 | 0 | 0 | 0 | 0.00 | 0. | 0.00 | 0. |
| 31 | | 2,558. | 296,105 | 9 | 0 | 0 | 0 | 0.00 | 0. | 0.00 | 0. |
| SUBTOTAL | | 30,118. | 3,486,104 | 75 | 0 | 0 | 0 | 0.00 | 0. | 0.00 | 0. |
| 40 | | 18,281. | 2,116,073 | 44 | 0 | 0 | 0 | 0.00 | 0. | 0.00 | 0. |
| 41 | | 7,001. | 810,309 | 31 | 0 | 0 | 0 | 0.00 | 0. | 0.00 | 0. |
| 42 | | 6,154. | 712,328 | 21 | 0 | 0 | 0 | 0.00 | 0. | 0.00 | 0. |
| SUBTOTAL | | 31,436. | 3,638,710 | 96 | 0 | 0 | 0 | 0.00 | 0. | 0.00 | 0. |
| 50 | | 11,310. | 1,309,140 | 27 | 0 | 0 | 0 | 0.00 | 0. | 0.00 | 0. |
| 60 | | 25,704. | 2,975,204 | 60 | 0 | 0 | 0 | 0.00 | 0. | 0.00 | 0. |
| 61 | | 1,874. | 216,948 | 7 | 0 | 0 | 0 | 0.00 | 0. | 0.00 | 0. |
| SUBTOTAL | | 27,578. | 3,192,153 | 67 | 0 | 0 | 0 | 0.00 | 0. | 0.00 | 0. |
| 71 | | 21,233. | 2,457,710 | 25 | 0 | 0 | 0 | 0.00 | 0. | 0.00 | 0. |
| 72 | | 12,215. | 1,413,893 | 15 | 0 | 0 | 0 | 0.00 | 0. | 0.00 | |
| 73 | | 5,494. | 635,915 | 7 | 0 | 0 | 0 | 0.00 | 0. | 0.00 | 0. |
| 74 | | 6,202. | 717,847 | 13 | 0 | 0 | 0 | 0.00 | 0. | 0.00 | 0. |
| SUBTOTAL | | 23,911. | 2,767,656 | 35 | 0 | 0 | 0 | 0.00 | 0. | 0.00 | 0. |
| 81 | | 2,270. | 262,712 | 47 | 28 | 28 | 25 | 1.08 | .684641E-01 | 3.11 | . $973960 \mathrm{E}+00$ |
| 82 | | 1,646. | 190,552 | 28 | 6 | 6 | 6 | 0.17 | .717281E-02 | 0.16 | . $611633 \mathrm{E}-02$ |
| 83 | | 1,281. | 148,224 | 31 | 27 | 27 | 26 | 8.12 | . $246502 \mathrm{E}+02$ | 8. 42 | . $180191 \mathrm{E}+02$ |
| 84 | | 965. | 111,735 | 27 | 24 | 24 | 24 | 2.10 | . $205648 \mathrm{E}+00$ | 1.32 | . $619183 \mathrm{E}-01$ |
| 100 | | 45,144. | 5,225,365 | 60 | 0 | 0 | 0 | 0.00 | 0. | 0.00 | 0. |
| 200 | | 135,107. | 15,638,602 | 354 | 0 | 0 | 0 | 0.00 | 0. | 0.00 | 0. |
| 300 | | 180,250. | 20,863,967 | 414 | 0 | 0 | 0 | 0.00 | 0. | 0.00 | 0. |
| 400 | | 6,162. | 713,222 | 133 | 85 | 85 | 81 | 2.46 | . $107950 \mathrm{E}+01$ | 3.15 | . $912349 \mathrm{E}+00$ |
| total | | 186,412. | 21,577,189 | 547 | 85 | 85 | 81 | 0.08 | . $117946 \mathrm{E}-02$ | 0.10 | .996830E-03 |

Table D-8.--Shortspine thornyhead (Cont.). Section b, biomass estimates by stratum.

Table D-8.--Shortspine thornyhead (Cont.). Section c, population number estimates by stratum.

Table D. 8. -- Shortspi ne thornyhead (Cont.). Section d, popul ation number estimates by sex and centineter interval for the overal l survey area.

| LENGTH(MM) | MALES | FEMALES | UNSEXED | TOTAL | PROPORTION | CUMULATIVE
 PROPORTION |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 100.0 | 0 | 0 | 28,229 | 28,229 | 0.00424 | 0.00424 |
| 110.0 | 0 | 0 | 82,143 | 82,143 | 0.01235 | 0.01659 |
| 120.0 | 13,037 | 0 | 77,223 | 90,260 | 0.01357 | 0.03016 |
| 130.0 | 6,716 | 6,943 | 70,176 | 83,835 | 0.01260 | 0.04277 |
| 140.0 | 37,402 | 3,782 | 134,464 | 175,648 | 0.02641 | 0.06918 |
| 150.0 | 13,366 | 3,281 | 82,538 | 99,185 | 0.01491 | 0.08409 |
| 160.0 | 33,310 | 14,589 | 30,802 | 78,701 | 0.01183 | 0.09592 |
| 170.0 | 29,003 | 14,127 | 29,836 | 72,965 | 0.01097 | 0.10689 |
| 180.0 | 18,627 | 11,554 | 34,238 | 64.418 | 0.00969 | 0.11658 |
| 190.0 | 58,618 | 14,589 | 21,673 | 94,881 | 0.01427 | 0.13084 |
| 200.0 | 53,424 | 8,550 | 19,030 | 81,004 | 0.01218 | 0.14302 |
| 210.0 | 92,753 | 27,031 | 24,698 | 144,482 | 0.02172 | 0.16474 |
| 220.0 | 100,041 | 51,218 | 27,479 | 178,738 | 0.02687 | 0.19162 |
| 230.0 | 74,687 | 39,508 | 21,850 | 136,044 | 0.02045 | 0.21207 |
| 240.0 | 63,793 | 38,695 | 10,736 | 113,224 | 0.01702 | 0.22909 |
| 250.0 | 52,479 | 30,330 | 13,605 | 96,414 | 0.01450 | 0.24359 |
| 260.0 | 45,068 | 24,647 | 2,669 | 72,384 | 0.01088 | 0.25447 |
| 270.0 | 68,344 | 19,072 | 10,037 | 97,453 | 0.01465 | 0.26912 |
| 280.0 | 75,735 | 47,286 | 7,923 | 130,945 | 0.01969 | 0.28881 |
| 290.0 | 86,250 | 50,930 | 7,923 | 145,104 | 0.02182 | 0.31063 |
| 300.0 | 72,519 | 63,240 | 3,109 | 138,868 | 0.02088 | 0.33151 |
| 310.0 | 104,615 | 84,441 | 1,554 | 190,611 | 0.02866 | 0.36016 |
| 320.0 | 101,007 | 100,584 | 0 | 201,591 | 0.03031 | 0.39047 |
| 330.0 | 105,661 | 71,373 | 1,554 | 178,588 | 0.02685 | 0.41732 |
| 340.0 | 56,608 | 87,387 | 0 | 143,995 | 0.02165 | 0.43897 |
| 350.0 | 96,481 | 84,589 | 0 | 181,070 | 0.02722 | 0.46620 |
| 360.0 | 126,972 | 127,098 | 0 | 254,069 | 0.03820 | 0.50439 |
| 370.0 | 61,710 | 83, 192 | 0 | 144.902 | 0.02179 | 0.52618 |
| 380.0 | 165,748 | 95,072 | 0 | 260,820 | 0.03921 | 0.56539 |
| 390.0 | 146,975 | 96,943 | 0 | 243,918 | 0.03667 | 0.60207 |
| 400.0 | 158,913 | 108,046 | 0 | 266,958 | 0.04014 | 0.64220 |
| 410.0 | 141,857 | 192,057 | 0 | 333,913 | 0.05020 | 0.69241 |
| 420.0 | 193,138 | 135,347 | 0 | 328,485 | 0.04939 | 0.74179 |
| 430.0 | 37,723 | 142.240 | 0 | 179,963 | 0.02706 | 0.76885 |
| 440.0 | 126,112 | 106,497 | 0 | 232,609 | 0.03497 | 0.80382 |
| 450.0 | 82,839 | 50,181 | 0 | 133,020 | 0.02000 | 0.82382 |
| 460.0 | 36,924 | 24,574 | 0 | 61,499 | 0.00925 | 0.83307 |
| 470.0 | 109,060 | 48,706 | 0 | 157,766 | 0.02372 | 0.85679 |
| 480.0 | 139,338 | 31,759 | 0 | 171,096 | 0.02572 | 0.88251 |
| 490.0 | 38,010 | 20,568 | 0 | 58,577 | 0.00881 | 0.89132 |
| 500.0 | 47,712 | 64,845 | 0 | 112,557 | 0.01692 | 0.90824 |
| 510.0 | 50,350 | 26,842 | 0 | 77,192 | 0.01161 | 0.91985 |
| 520.0 | 84,530 | 22,490 | 0 | 107,020 | 0.01609 | 0.93594 |
| 530.0 | 59,438 | 21,820 | 0 | 81,258 | 0.01222 | 0.94815 |
| 540.0 | 2,977 | 46,187 | 0 | 49,164 | 0.00739 | 0.95555 |
| 550.0 | 35,188 | 25,889 | 0 | 61,077 | 0.00918 | 0.96473 |
| 560.0 | 9,799 | 48,221 | 0 | 58,020 | 0.00872 | 0.97345 |
| 570.0 | 35,116 | 12,486 | 0 | 47,602 | 0.00716 | 0.98061 |
| 580.0 | 0 | 34,028 | 0 | 34,028 | 0.00512 | 0.98573 |
| 590.0 | 6,884 | 14.324 | 0 | 21,208 | 0.00319 | 0.98891 |
| 600.0 | 3,772 | 16,178 | 0 | 19,950 | 0.00300 | 0.99191 |

Table D. 8.-- Shortspine thornyhead (Cont.). Section d, population number estimates by sex and centineter interval for the overal l survey area.

| LENGTH(MM) | MALES | FEMALES | UNSEXED | TOTAL | PROPORTION | CUMULATIVE PROPORTION |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 610.0 | 0 | 15,982 | 0 | 15,982 | 0.00240 | |
| 620.0 | 0 | 9,748 | 0 | 15,982 9,748 | 0.00147 | 0.99432 0.99578 |
| 630.0 | 0 | 2,977 | 0 | 2,977 | 0.00045 | 0.99623 |
| 640.0 | 0 | 1,243 | 0 | 1,243 | 0.00019 | 0.996642 |
| 650.0 | 0 | 5,015 | 0 | 5,015 | 0.00075 | 0.99717 |
| 660.0 | 0 1 | 3,772 | 0 | 3,772 | 0.00057 | 0.99774 |
| 670.0 | 1,075 | 1,952 | 0 | 3,027 | 0.00046 | 0.99819 |
| 680.0 | 0 | 3,886 | 0 | 3,886 | 0.00058 | 0.99878 |
| 690.0 | 0 | 5,023 | 0 | 5,023 | 0.00076 | |
| 800.0 | 0 | 3,112 | 0 | 3,112 | 0.00047 | 1.00000 |
| total | 3,361,705 | 2,546,043 | 743,489 | 6,651,237 | | |

Table D. 9.--Yel I oufin sole. Section a, CPUE estinates by stratum

| STRATUM | AREA SQ. MI. | SAMPLES | tOTAL HAULS | HAULS HITH CATCH | HAULS WITH NUMS. | HAULS WITH L-F | MEAN CPUE KG/HA | VARIANCE MEAN CPUE KG/HA | MEAN CPUE HO/HA | VARIANCE MEAN CPUE HO/HA |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 10 | 22,704. | 2,627,943 | 58 | 58 | 58 | 57 | 167.37 | . $561959 \mathrm{E}+03$ | 742.33 | .683023E+04 |
| 20 | 11,962. | 1,384,553 | 31 | 31 | 31 | 31 | 86.05 | . $157598 \mathrm{E}+03$ | 572.18 | $.123337 E+05$ |
| 30 | 27,559. | 3,189,999 | 66 | 64 | 64 | 64 | 99.38 | . $170085 \mathrm{E}+03$ | 313.80 | .198671E+04 |
| 31 | 2,558. | 296,105 | 9 | 7 | 7 | 7 | 6.04 | $.589582 \mathrm{E}+01$ | 14.81 | . $462933 \mathrm{E}+02$ |
| SUBTOTAL | 30,118. | 3,486,104 | 75 | 71 | 71 | 71 | 91.45 | . $142461 \mathrm{E}+03$ | 288.40 | $.166388 E+04$ |
| - 40 | 18,281. | 2,116,073 | 44 | 39 | 39 | 39 | 26.57 | . $455229 \mathrm{E}+02$ | 81.99 | .479146E+03 |
| 41 | 7,001. | 810,309 | 31 | 29 | 29 | 29 | 32.17 | . $675678 \mathrm{E}+02$ | 99.88 | . $777542 \mathrm{E}+03$ |
| 42 | 6,154. | 712,328 | 21 | 20 | 20 | 20 | 4.53 | . $366252 \mathrm{E}+01$ | 15.04 | . $493604 \mathrm{E}+02$ |
| SUBTOTAL | 31,436. | 3,638,710 | 96 | 88 | 88 | 88 | 23.50 | . $188867 \mathrm{E}+02$ | 72.87 | . $202496 \mathrm{E}+03$ |
| 50 | 11,310. | 1,309,140 | 27 | 0 | 0 | 0 | 0.00 | 0. | 0.00 | 0. |
| 60 | 25,704. | 2,975,204 | 60 | 1 | 1 | 1 | 0.01 | .188269E-03 | 0.06 | . $390563 \mathrm{E}-02$ |
| 61 | 1,874. | 216,948 | 7 | 0 | 0 | 0 | 0.00 | 0. | 0.00 | 0. |
| SUBTOTAL | 27,578. | 3,192,153 | 67 | 1 | 1 | 1 | 0.01 | . 163548E-03 | 0.06 | . $339279 \mathrm{E}-02$ |
| 71 | 21,233. | 2,457,710 | 25 | 25 | 25 | 23 | 23.90. | $.419113 \mathrm{E}+02$ | 138.05 | .215829E+04 |
| 72 | 12,215. | 1,413,893 | 15 | 6 | 6 | 6 | 9.70 | .640269E+02 | 31.03 | . $749495 \mathrm{E}+03$ |
| 73 | 5,494. | 635,915 | 7 | 0 | 0 | 0 | 0.00 | 0. | 0.00 | $0 .$ |
| 74 | 6,202. | 717,847 | 13 | 6 | 6 | 6 | 0.08 | .778809E-03 | 0.37 | . $184252 \mathrm{E}-01$ |
| SUBTOTAL | 23,911. | 2,767,656 | 35 | 12 | 12 | 12 | 4.97 | $.167099 \mathrm{E}+02$ | 15.95 | $.195605 E+03$ |
| 81 | 2,270. | 262,712 | 47 | 0 | 0 | 0 | 0.00 | 0. | 0.00 | 0. |
| 82 | 1,646. | 190,552 | 28 | 0 | 0 | 0 | 0.00 | 0. | 0.00 | 0. |
| 83 | 1,281. | 148,224 | 31 | 0 | 0 | 0 | 0.00 | 0. | 0.00 | 0. |
| 84 | 965. | 111,735 | 27 | 0 | 0 | 0 | 0.00 | 0. | 0.00 | 0. |
| 100 | 45,144. | 5,225,365 | 60 | 37 | 37 | 35 | 13.87 | . $139594 \mathrm{E}+02$ | 73.38 | $.532335 \mathrm{E}+03$ |
| 200 | 135,107. | 15,638,602 | 354 | 249 | 249 | 248 | 61.60 | . 252056E+02 | 256.66 | . $383193 \mathrm{E}+03$ |
| 300 | 180,250. | 20,863,967 | 414 | 286 | 286 | 283 | 49.65 | $.150368 \mathrm{E}+02$ | 210.75 | . $248678 \mathrm{E}+03$ |
| 400 | 6.162. | 713,222 | 133 | 0 | 0 | 0 | 0.00 | 0. | 0.00 | 0. |
| TOTAL | 186,412. | 21,577,189 | 547 | 286 | 286 | 283 | 48.01 | . $140591 \mathrm{E}+02$ | 203.79 | . $232510 \mathrm{E}+03$ |

Table D.9.--Yelloufin sole (Cont.). Section b, bionass estimates by strewn.

Table D.9.-- Yelloufin sole (Cont.). Section c, population number estimates by stratum

Table D. 9.-- Yelloufin sole (Cont.) Section d, population number estimates by sex and centineter length interval for the overall survey area.

| LENGTH(MM) | MALES | FEMALES | UNSEXED | total | PROPORTION | CUMULATIVE PROPORTION |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 70.0 | 0 | 0 | 843,893 | 843,893 | 0.00006 | 0.00006 |
| 80.0 | 381,613 | 0 | 0 | 381,613 | 0.00003 | 0.00009 |
| 90.0 | 1,663,312 | 1,014,561 | 0 | 2,677,873 | 0.00021 | 0.00030 |
| 100.0 | 1,831,946 | 4,398,798 | 0 | 6,230,744 | 0.00048 | 0.00078 |
| 110.0 | 14,577,508 | 14,174,166 | 0 | 28,751,674 | 0.00221 | 0.00298 |
| 120.0 | 31,950,246 | 25,353,261 | 0 | 57,303,507 | 0.00440 | 0.00738 |
| 130.0 | 66,266,062 | 81,615,727 | 0 | 147,881,788 | 0.01135 | 0.01873 |
| 140.0 | 97,703,936 | 110,692,681 | 0 | 208,396,617 | 0.01599 | 0.03473 |
| 150.0 | 168,574,118 | 169,684,569 | 0 | 338,258,686 | 0.02596 | 0.06069 |
| 160.0 | 253,490,722 | 265,849,483 | 0 | 519,340,205 | 0.03986 | 0.10054 |
| 170.0 | 269,478,598 | 314,148,535 | 0 | 583,627,133 | 0.04479 | 0.14534 |
| 180.0 | 318,293,279 | 354,138,414 | 479,998 | 672,911,690 | 0.05164 | 0.19698 |
| 190.0 | 334,565,976 | 387,445,283 | 479,998 | 722,491,257 | 0.05545 | 0.25243 |
| 200.0 | 279,509,571 | 298,052,756 | 959,995 | 578,522,323 | 0.04440 | 0.29683 |
| 210.0 | 246,586,009 | 280,303, 299 | 1,439,993 | 528,329,300 | 0.04055 | 0.33738 |
| 220.0 | 237,461,778 | 249,121,219 | 479,998 | 487,062,995 | 0.03738 | 0.37476 |
| 230.0 | 242,857,426 | 245,354,969 | 479,998 | 488,692,393 | 0.03751 | 0.41227 |
| 240.0 | 232,608,170 | 234,672,861 | 0 | 467,281,030 | 0.03586 | 0.44813 |
| 250.0 | 209,459,101 | 227,710,222 | 0 | 437,169,322 | 0.03355 | 0.48168 |
| 260.0 | 207,309,334 | 231,804,505 | 719,997 | 439,833,836 | 0.03376 | 0.51544 |
| 270.0 | 228,201,102 | 229,528,779 | 479,998 | 458,209,878 | 0.03517 | 0.55060 |
| 280.0 | 299,028,064 | 241,789,926 | 239,999 | 541,057,989 | 0.04152 | 0.59213 |
| 290.0 | 418,177,962 | 303, 087, 154 | 479,998 | 721,745,115 | 0.05539 | 0.64752 |
| 300.0 | 431,841,910 | 395,001,656 | 719,997 | 827,563,563 | 0.06351 | 0.71103 |
| 310.0 | 402,667,551 | 581,670,492 | 719.997 | 985,058,039 | 0.07560 | 0.78663 |
| 320.0 | 253,437,918 | 580,353,650 | 719,997 | 834,511,564 | 0.06405 | 0.85068 |
| 330.0 | 136,749,531 | 519,704,785 | 479.998 | 656,934,314 | 0.05042 | 0.90110 |
| 340.0 | 94,165,532 | 457,771,511 | 0 | 551,937,043 | 0.04236 | 0.94346 |
| 350.0 | 33,777,574 | 291,132,285 | 959.995 | 325,869,855 | 0.02501 | 0.96847 |
| 360.0 | 10,349,570 | 185,804,889 | 479,998 | 196,634,456 | 0.01509 | 0.98356 |
| 370.0 | 6,653,307 | 100,201,720 | 719,997 | 107,575,024 | 0.00826 | 0.99182 |
| 380.0 | 1,118,780 | 58,700,887 | 239,999 | 60,059,666 | 0.00461 | 0.99642 |
| 390.0 | 235,595 | 25,551,136 | 479.998 | 26,266,728 | 0.00202 | 0.99844 |
| 400.0 | 293,402 | 11,169,310 | 0 | 11,462,712 | 0.00088 | 0.99932 |
| 410.0 | 0 | 7,553,728 | 0 | 7,553,728 | 0.00058 | 0.99990 |
| 420.0 | 0 | 594,000 | 0 | 594,000 | 0.00005 | 0.99995 |
| 430.0 | 0 | 604,512 | 0 | 604,512 | 0.00005 | 0.99999 |
| 440.0 | 0 | 101,953 | 0 | 101,953 | 0.00001 | 1.00000 |
| TOTAL | 5,531,266,501 | 7,485,857,682 | 12,603,837 | 13,029,728,020 | | |

Table D. 10. --Rock sole. Section a, CPUE estimates by stratum

| STRATUM | AREA SO. MI. | SAMPLES | TOTAL HAULS | HAULS HITH CATCH | haULS HITH NUMS. | haUls HITH
 L-F | MEAN CPUE KG/HA | VARIANCE MEAN CPUE KG/HA | MEAN CPUE NO/HA | VARIANCE mean cpue NO/HA |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 10 | 22,704. | 2,627,943 | 58 | 58 | 58 | 57 | | | | |
| 20 | 11,962. | 1,384,553 | 31 | 58 30 | 58 30 | 30 | 112.77 27.81 | . $136499 \mathrm{E}+03$ | 700.18 163.21 | $.644758 \mathrm{E}+04$ $.375755 \mathrm{E}+03$ |
| 30 | 27,559. | 3,189,999 | 66 | 64 | 64 | 62 | 58.75 | . $580923 \mathrm{E}+02$ | 303.24 | . $165684 \mathrm{E}+04$ |
| 31 | 2,558. | 296,105 | 9 | 8 | 8 | 5 | 39.97 | . $103011 \mathrm{E}+03$ | 156.54 | .184019E+04 |
| SUBTOTAL | 30,118. | 3,486,104 | 75 | 72 | 72 | 67 | 57.16 | . $493861 \mathrm{E}+02$ | 290.78 | $.140061 E+04$ |
| 40 | 18,281. | 2,116,073 | 44 | 43 | 43 | 33 | 8.28 | .331962E+01 | 32.89 | .623471E+02 |
| 41 | 7,001. | 810,309 | 31 | 31 | 31 | 29 | 81.65 | . $279026 \mathrm{E}+03$ | 293.09 | . $290396 \mathrm{E}+04$ |
| 42 | 6,154. | 712,328 | 21 | 21 | 21 | 21 | 8.43 | . $142916 \mathrm{E}+02$ | 33.16 | . $146268 \mathrm{E}+03$ |
| SUBTOTAL | 31,436. | 3,638,710 | 96 | 95 | 95 | 83 | 24.65 | . $155077 \mathrm{E}+02$ | 90.89 | . $170703 \mathrm{E}+03$ |
| 50 | 11,310. | 1,309,140 | 27 | 10 | 10 | 3 | 0.94 | .956347E-01 | 1.57 | . $253464 \mathrm{E}+00$ |
| 60 | 25,704. | 2,975, 204 | 60 | 49 | 49 | 38 | 5.50 | | 11.91 | $.291046 E+01$ |
| - 61 | 1,874. | 216,948 | 7 | 7 | 7 | 7 | 4.53 | . $156196 \mathrm{E}+01$ | 13.14 | $\text { . } 118120 E+02$ |
| SUBTOTAL | 27,578. | 3,192,153 | 67 | 56 | 56 | 45 | 5.43 | $.705972 \mathrm{E}+00$ | 11.99 | . $258286 \mathrm{E}+01$ |
| 71 | 21,233. | 2,457,710 | 25 | 14 | 14 | 14 | 0.82 | .621493E-01 | 19.63 | . 104040E+03 |
| 72 | 12,215. | 1,413,893 | 15 | 4 | 4 | 2 | 0.31 | .826271E-01 | 2.77 | . $709421 \mathrm{E}+01$ |
| 73 | 5,494. | 635,915 | 7 | 7 | 7 | 7 | 2.02 | . $402974 \mathrm{E}+00$ | 5.60 | . $154227 E+01$ |
| 74 | 6,202. | 717,847 | 13 | 5 | 5 | 4 | 0.07 | . $114345 \mathrm{E}-02$ | 0.49 | .558271E-01 |
| SUBTOTAL | 23,911. | 2,767,656 | 35 | 16 | 16 | 13 | 0.64 | .429152E-01 | 2.83 | . $193663 \mathrm{E}+01$ |
| 81 | 2,270. | 262,712 | 47 | 1 | 1 | 0 | 0.00 | .974054E-06 | 0.01 | .295893E-04 |
| 82 | 1,646. | 190,552 | 28 | 4 | 4 | 0 | 0.03 | .219431E-03 | 0.05 | . $693707 E-03$ |
| 83 | 1,281. | 148,224 | 31 | 0 | 0 | 0 | 0.00 | 0. | 0.00 | 0. |
| 84 | 965. | 111,735 | 27 | 0 | 0 | 0 | 0.00 | 0. | 0.00 | 0. |
| 100 | 45,144. | 5,225,365 | 60 | 30 | 30 | 27 | 0.72 | .257881E-01 | 10.73 | .235591E+02 |
| 200 | 135,107. | 15,638,602 | 354 | 321 | 321 | 285 | 41.08 | .727935E+01 | 220.66 | .263962E+03 |
| 300 | 180,250. | 20,863,967 | 414 | 351 | 351 | 312 | 30.97 | . $409135 \mathrm{E}+01$ | 168.08 | . $149779 E+03$ |
| 400 | 6,162. | 713,222 | 133 | 5 | 5 | 0 | 0.01 | .157952E-04 | 0.01 | . $535314 \mathrm{E}-04$ |
| TOTAL | 186,412. | 21,577,189 | 547 | 356 | 356 | 312 | 29.95 | $.382534 \mathrm{E}+01$ | 162.53 | $.140041 \mathrm{E}+03$ |

Table D. 10. -- Rock sole (Cont.). Section b, bi onass estinate by stratum

| STRATUM | BIOMASS MT | VARI ANCE biomass | EFF. DEG. freEdom | 95% CONFIDENCE LIMITS LOWER | - BIOMASS UPPER |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 10 | 878,172 | . $827718486 \mathrm{E}+10$ | 57.00 | 695,928 | 1,060,417 |
| 20 | 114,095 | -217234980E+09 | 30.00 | 83,998 | 144,192 |
| 30 | 555,387 | . $519065088 \mathrm{E}+10$ | 65.00 | 411,414 | 699,359 |
| 31 | 35,072 | .793039733E+08 | 8.00 | 14,536 | 55,607 |
| SUBTOTAL | 590,458 | . $526995485 \mathrm{E}+10$ | 66.87 | 445,439 | 735,478 |
| 40 | 51,941 | . $130518118 \mathrm{E}+09$ | 43.00 | 28,888 | 74,994 |
| 41 | 196,053 | . $160867433 \mathrm{E}+10$ | 30.00 | 114,152 | 277,954 |
| 42 | 17,799 | . $636739084 \mathrm{E}+08$ | 20.00 | 1,153 | 34,444 |
| SUBTOTAL | 265,793 | . $180286636 \mathrm{E}+10$ | 37.42 | 179,713 | 351,872 |
| 50 | 3,633 | . 143916224E+07 | 26.00 | 1,166 | 6,099 |
| 60 | 48,479 | . $625194979 \mathrm{E}+08$ | 59.00 | 32,657 | 64,301 |
| 61 | 2,914 | . $645512738 \mathrm{E}+06$ | 6.00 | 948 | 4,880 |
| SUBIOTAL | 51,393 | . $631650106 E+08$ | 60.16 | 35,498 | 67,288 |
| 71 | 5,941 | . $329624320 \mathrm{E}+07$ | 24.00 | 2,193 | 9,688 |
| 72 | 1,299 | . $145036588 \mathrm{E}+07$ | 14.00 | 0 | 3,882 |
| 73 | 3,799 | . $143086183 \mathrm{E}+07$ | 6.00 | 872 | 6,726 |
| 74 | 143 | . $517372937 \mathrm{E}+04$ | 12.00 | 0 | 300 |
| SUBTOTAL | 5,240 | . $288640144 \mathrm{E}+07$ | 16.95 | 1,656 | 8,825 |
| 81 | 1 | . $590288523 \mathrm{E}+00$ | 46.00 | 0 | 2 |
| 82 | 16 | .699596370E+02 | 27.00 | 0 | 33 |
| 83 | 0 | 0. | 0.00 | 0 | 0 |
| 84 | 0 | 0. | 0.00 | 0 | 0 |
| 100 | 11,181 | .618264464E+07 | 40.48 | 6,156 | 16,206 |
| 200 | 1,903,544 | . $156318452 \mathrm{E}+11$ | 143.25 | 1,655,991 | 2,151,096 |
| 300 | 1,914,725 | $.156380279 \mathrm{E}+11$ | 143.37 | 1,667,123 | 2,162,326 |
| 400 | 16 | . $705499255 \mathrm{E}+02$ | 27.46 | 0 | 34 |
| TOTAL | 1,914,741 | . $156380279 \mathrm{E}+11$ | 143.37 | 1,667,140 | 2,162,343 |

| | TOTAL BIOMASS MT LOWER | UPPER | rotal populat LOWER | UPPER |
| :---: | :---: | :---: | :---: | :---: |
| 80.000 PERCENT | 1,753,550 | 2,075,933 | 9,415,097,114 | 11,367,805,200 |
| 90.000 PERCENT | 1,707,406 | 2,122,076 | 9,134,993,063 | 11,647,909,250 |
| 95.000 PERCENT | 1,667,140 | 2,162,343 | 8,890,299,249 | 11,892,603,064 |

Table D. 10. --Rock sole (Cont.). Section C, population number estinates by stratum

| SIRATUM | MEAN | WT KG | POPULATION | VARIANCE POPULATION | METHOD USED | EFF. DEG. FREEDOM | 95\% CONFIDENCE L LOWER | IIS - POPULATION UPPER |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 10 | | 0.161 | 5,452,373,675 | . $390976333 \mathrm{E}+18$ | 1 | 57.00 | 4,199,842,034 | 6,704,905,317 |
| 20 | | 0.170 | 669,611,088 | . $632479195 \mathrm{E}+16$ | 1 | 30.00 | 507,213,767 | 832,008,409 |
| 30 | | 0.194 | 2,866,405,329 | . $148041163 \mathrm{E}+18$ | 1 | 65.00 | 2,097,524,245 | 3,635,286,412 |
| 31 | | 0.255 | 137,347,348 | . $141668839 \mathrm{E}+16$ | 1 | 8.00 | 50,551,996 | 3,224,142,701 |
| SUBTOTAL | | 0.197 | 3,003,752,677 | . $149457851 \mathrm{E}+18$ | | 66.20 | 2,231,330,293 | 3,776,175,061 |
| 40 | | 0.252 | 206,218,830 | . $245131646 \mathrm{E}+16$ | 1 | 43.00 | 106,313,520 | 306,124,139 |
| 41 | | 0.279 | 703,737,088 | . $167422901 E+17$ | 1 | 30.00 | 439,518,620 | 967,955,555 |
| 42 | | 0.254 | 69,998,440 | .651674177E+15 | 1 | 20.00 | 16,747,220 | 123,249,659 |
| SUBTOTAL | | 0.271 | 979,954,357 | . $198452808 \mathrm{E}+17$ | | 41.44 | 695,397,377 | 1,264,511,337 |
| 50 | | 0.595 | 6,107,244 | $.381426042 \mathrm{E}+13$ | 1 | 26.00 | 2,091,849 | 10,122,639 |
| 60 | | 0.462 | 104,982,019 | . $226213018 \mathrm{E}+15$ | 1 | 59.00 | 74,885,468 | $135,078,571$ |
| 61 | | 0.345 | 8,450,012 | . $488153751 \mathrm{E}+13$ | 1 | 6.00 | 3,043,561 | $13,856,463$ |
| SUBTOTAL | | 0.453 | 113,432,031 | .231094556E+15 | | 61.29 | 83,033,509 | 143,830,553 |
| 71 | | 0.042 | 142,958,716 | . $551800146 \mathrm{E}+16$ | 1 | 24.00 | 0 | 296,279,348 |
| 72 | | 0.112 | 11,623,410 | $.124525740 \mathrm{E}+15$ | 1 | 14.00 | 0 | 35,559,701 |
| 73 | | 0.360 | 10,558,906 | . $547620421 E+13$ | 1 | 6.00 | 4,832,610 | 16,285,202 |
| 74 | | 0.137 | 1,047,748 | . $252598582 \mathrm{E}+12$ | 1 | 12.00 | - 0 | 2,142,895 |
| SUBTOTAL | | 0.226 | 23,230,064 | . $130254543 \mathrm{E}+15$ | | 15.25 | 0 | 47,550,978 |
| 81 | | 0.181 | 4,235 | . $179314654 \mathrm{E}+08$ | 1 | 46.00 | 0 | 12,766 |
| 82 | | 0.580 | 27,070 | . $221169165 \mathrm{E}+09$ | 1 | 27.00 | 0 | 57,587 |
| 83 | | 0.000 | 0 | 0. | 1 | 0.00 | 0 | 5 0 |
| 84 | | 0.000 | 0 | 0. | 1 | 0.00 | 0 | 0 |
| 100 | | 0.067 | 166,188,780 | . $564825600 \mathrm{E}+16$ | 1 | 25.12 | 11,369,727 | 321,007,833 |
| 200 | | 0.186 | 10,225,231,072 | . $566839166 \mathrm{E}+18$ | 1 | 106.04 | 8,731,000,903 | 11,719,461,240 |
| 300 | | 0.184 | 10,391,419,852 | . $572487422 \mathrm{E}+18$ | 1 | 108.12 | 8,890,267,945 | 11,892,571,759 |
| 400 | | 0.526 | 31,305 | . $239100630 \mathrm{E}+09$ | 1 | 31.43 | 0 | 62,848 |
| total | | 0.184 | 10,391,451,157 | . $572487422 \mathrm{E}+18$ | | 108.12 | 8,890,299,249 | 11,892,603,064 |

| LENGTH(MM) | MALES | FEMALES | UNSEXED | TOTAL | PROPORTION | CUMULATIVE
 PROPORTION |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 40.0 | 0 | 214,592 | 0 | 214,592 | 0.00002 | 0.00002 |
| 50.0 | 65,485 | 214,592 | 0 | 280,076 | 0.00003 | 0.00005 |
| 60.0 | 438,688 | 0 | 1,209,713 | 1,648,402 | 0.00016 | 0.00021 |
| 70.0 | 4,260,603 | 1,783,388 | 3,714,937 | 9,758,928 | 0.00094 | 0.00115 |
| 80.0 | 20,913,782 | 15,811,431 | 10,548,580 | 47,273,793 | 0.00455 | 0.00569 |
| 90.0 | 30,419,440 | 19,041,527 | 27,681,086 | 77,142,053 | 0.00742 | 0.01312 |
| 100.0 | 42,572,068 | 36,926,250 | 47,368,718 | 126,867,036 | 0.01221 | 0.02533 |
| 110.0 | 95,558,999 | 73,884,749 | 39,235,933 | 208,679,681 | 0.02008 | 0.04541 |
| 120.0 | 156,946,234 | 133,330,527 | 25,338,605 | 315,615,367 | 0.03037 | 0.07578 |
| 130.0 | 174,702,880 | 228,574,004 | 18,467,808 | 421,744,692 | 0.04059 | 0.11637 |
| 140.0 | 214,102,137 | 215,667,630 | 8,572,560 | 438,342,327 | 0.04218 | 0.15855 |
| 150.0 | 238,031,542 | 227,084,744 | 1,303,450 | 466,419,736 | 0.04488 | 0.20344 |
| 160.0 | 221,601,209 | 221,815,290 | 63,131 | 443,479,629 | 0.04268 | 0.24611 |
| 170.0 | 199,641,254 | 171,332,445 | 0 | 370,973,699 | 0.03570 | 0.28181 |
| 180.0 | 208,389, 288 | 190,993,526 | 0 | 399,382,814 | 0.03843 | 0.32025 |
| 190.0 | 234,843,295 | 210,148,811 | 0 | 444,992,106 | 0.04282 | 0.36307 |
| 200.0 | 221,219,363 | 196,152,432 | 0 | 417.371,795 | 0.04016 | 0.40323 |
| 210.0 | 253,721,879 | 222,321,878 | 0 | 476,043,757 | 0.04581 | 0.44905 |
| 220.0 | 285,364,853 | 233,468,957 | 0 | 518,833,810 | 0.04993 | 0.49897 |
| 230.0 | 311,023,047 | 232,977,635 | 0 | 544,000,682 | 0.05235 | 0.55132 |
| 240.0 | 273,626,888 | 219,170,149 | 0 | 492,797, 036 | 0.04742 | 0.59875 |
| 250.0 | 202,437,926 | 173,272,207 | 0 | 375,710,133 | 0.03616 | 0.63490 |
| 260.0 | 200,550,250 | 194,533,360 | 0 | 395,083,610 | 0.03802 | 0.67292 |
| 270.0 | 192,236, 108 | 177,611,337 | 0 | 369,847,445 | 0.03559 | 0.70852 |
| 280.0 | 204,808,524 | 154,083,543 | 0 | 358,892,067 | 0.03454 | 0.74305 |
| 290.0 | 268,254,723 | 166,680,074 | 0 | 434,934,797 | 0.04186 | 0.78491 |
| 300.0 | 257,788,556 | 157,305,257 | 0 | 415,093,814 | 0.03995 | 0.82485 |
| 310.0 | 213,526,343 | 204,993,174 | 0 | 418,519,517 | 0.04028 | 0.86513 |
| 320.0 | 97,019,748 | 160,307,686 | 0 | 257,327,434 | 0.02476 | 0.88989 |
| 330.0 | 50,944,764 | 170,637,723 | 0 | 221,582,488 | 0.02132 | 0.91122 |
| 340.0 | 22,827,852 | 150,931,734 | 0 | 173,759,585 | 0.01672 | 0.92794 |
| 350.0 | 9,156,942 | 153,601,203 | 0 | 162,758,145 | 0.01566 | 0.94360 |
| 360.0 | 4,318,441 | 137,179,161 | 0 | 141,497,602 | 0.01362 | 0.95722 |
| 370.0 | 3,021,849 | 119,618,416 | 0 | 122,640,265 | 0.01180 | 0.96902 |
| 380.0 | 1,235,625 | 98,160,455 | 0 | 99,396,080 | 0.00957 | 0.97858 |
| 390.0 | 329,101 | 76,263,211 | 0 | 76,592,312 | 0.00737 | 0.98595 |
| 400.0 | 256,613 | 57,971,567 | 0 | 58,228,179 | 0.00560 | 0.99156 |
| 410.0 | 438,663 | 28,723,020 | 0 | 29,161,684 | 0.00281 | 0.99436 |
| 420.0 | 360,864 | 27,130,686 | 0 | 27,491,549 | 0.00265 | 0.99701 |
| 430.0 | 438,663 | 16,155,670 | 0 | 16,594,334 | 0.00160 | 0.99861 |
| 440.0 | 0 | 7,570, 197 | 0 | 7,570,197 | 0.00073 | 0.99934 |
| 450.0 | 0 | 4,352,662 | 0 | 4,352,662 | 0.00042 | 0.99975 |
| 460.0 | 214,592 | 1,158,450 | 0 | 1,373,041 | 0.00013 | 0.99989 |
| 470.0 | 0 | 512,798 | 0 | 512,798 | 0.00005 | 0.99994 |
| 480.0 | 0 | 199,760 | 0 | 199.760 | 0.00002 | 0.99995 |
| 490.0 | 0 | 65,485 | 0 | 65,485 | 0.00001 | 0.99996 |
| 500.0 | 233,067 | 139,791 | 0 | 372,858 | 0.00004 | 1.00000 |
| TOTAL | 4,917,842,146 | 5,290,073,184 | 183,504,521 | 10,391,419,852 | | |

Table D. 11.--FI at head sole. Section a, CPUE estimates by stratum

| STRATUM | AREA SA. MI. | SAMPLES | TOTAL HAULS | HAULS WITH CATCH | $\begin{aligned} & \text { HAULS } \\ & \text { WITH } \\ & \text { NUMS. } \end{aligned}$ | HAULS WITH $L-F$ | MEAN CPUE
 KG/HA | VARIANCE MEAN CPUE KG/HA | MEAN CPUE HO/HA | VARIANCE MEAN CPUE HO/HA |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 10 | 22,704. | 2,627,943 | 58 | 30 | 30 | 23 | 1.76 | . $134075 E+00$ | 5.34 | .189833E+01 |
| 20 | 11,962. | 1,384,553 | 31 | 11 | 11 | 0 | 0.15 | . $331196 E-02$ | 0.54 | .477845E-01 |
| 30 | 27,559. | 3,189,999 | 66 | 65 | 65 | 55 | 19.07 | . $773188 \mathrm{E}+01$ | 59.06 | .631176E+02 |
| 31 | 2.558. | 296.105 | 9 | 9 | 9 | 4 | 24.21 | .409769E+03 | 57.29 | .219252E+04 |
| SUBTOTAL | 30,118. | 3,486,104 | 75 | 74 | 74 | 59 | 19.51 | .943050E+01 | 58.91 | . $686688 \mathrm{E}+02$ |
| 40 | 18,281. | 2,116,073 | 44 | 43 | 43 | 27 | 3.21 | . $372646 \mathrm{E}+00$ | 19.58 | . $256076 \mathrm{E}+02$ |
| 41 | 7,001. | 810,309 | 31 | 27 | 27 | 15 | 5.92 | . $200514 \mathrm{E}+01$ | 22.00 | . $302008 \mathrm{E}+02$ |
| 42 | 6,154. | 712,328 | 21 | 20 | 20 | 16 | 5.94 | . $495687 \mathrm{E}+01$ | 57.75 | . $730686 \mathrm{E}+03$ |
| SUBTOTAL | 31,436. | 3,638,710 | 96 | 90 | 90 | 58 | 4.35 | . $415429 \mathrm{E}+00$ | 27.59 | . $381605 \mathrm{E}+02$ |
| 50 | 11.310. | 1,309,140 | 27 | 27 | 27 | 25 | 25.41 | .899887E+01 | 173.40 | .670712E+03 |
| 60 | 25,704. | 2,975,204 | 60 | 58 | 58 | 55 | 21.79 | . 134902E+02 | 85.85 | . $136854 \mathrm{E}+03$ |
| 61 | 1,874. | 216,948 | 7 | 7 | 7 | 7 | 6.44 | .235206E+01 | 43.57 | $.197648 \mathrm{E}+03$ |
| SUBTOTAL | 27,578. | 3,192,153 | 67 | 65 | 65 | 62 | 20.74 | . $117297 \mathrm{E}+02$ | 82.97 | . $119797 \mathrm{E}+03$ |
| 71 | 21,233. | 2,457,710 | 25 | 11 | 11 | 9 | 0.65 | .564259E-01 | 5.10 | .442069E+01 |
| 72 | 12,215. | 1,413,893 | 15 | 15 | 15 | 15 | 3.76 | .909697E+00 | 52.64 | .118689E+03 |
| 73 | 5,494. | 635,915 | 7 | 7 | 7 | 7 | 11.55 | . $566986 \mathrm{E}+01$ | 120.59 | . $713829 \mathrm{E}+03$ |
| 74 | 6,202. | 717,847 | 13 | 13 | 13 | 12 | 3.95 | . $666881 \mathrm{E}+00$ | 42.94 | . $860881 \mathrm{E}+02$ |
| SUBTOTAL | 23,911. | 2,767,656 | 35 | 35 | 35 | 34 | 5.60 | . $581604 \mathrm{E}+00$ | 65.74 | .744521E+02 |
| 81 | 2,270. | 262,712 | 47 | 40 | 40 | 29 | 11.36 | . $270537 \mathrm{E}+01$ | 22.47 | . $982525 \mathrm{E}+01$ |
| 82 | 1,646. | 190,552 | 28 | 23 | 23 | 10 | 3.13 | . $559527 \mathrm{E}+00$ | 10.08 | . $970665 \mathrm{E}+01$ |
| 83 | 1,281. | 148,224 | 31 | 4 | 4 | 3 | 0.26 | . $350311 \mathrm{E}-01$ | 0.38 | . $738791 \mathrm{E}-01$ |
| 84 | 965. | 111,735 | 27 | 1 | 1 | 1 | 0.00 | .161674E-04 | 0.00 | .196450E-04 |
| - 100 | 45,144. | 5,225,365 | 60 | 46 | 46 | 43 | 3.27 | .175644E+00 | 37.22 | .218645E+02 |
| 200 | 135,107. | 15,638,602 | 354 | 297 | 297 | 227 | 12.03 | . 104670E+01 | 51.95 | $.152237 E+02$ |
| 300 | 180,250. | 20,863,967 | 414 | 343 | 343 | 270 | 9.84 | . $599081 \mathrm{E}+00$ | 48.26 | .992451E+01 |
| 400 | 6,162. | 713,222 | 133 | 68 | 68 | 43 | 5.08 | . $408512 \mathrm{E}+00$ | 11.05 | . 202912E+01 |
| TOTAL | 186,412. | 21,577,189 | 547 | 411 | 411 | 313 | 9.68 | $.560577 \mathrm{E}+00$ | 47.03 | .928147E+01 |

Table D. 11.--FI athead sole (Cont.). Section b, bi onass estinates by stratum

Table D. 11.--Fl athead sole (Cont.). Section c, population number estimates by stratum

| STRATUM | MEAN | WT KG | POPULATION | VARIANCE POPULATION | $\begin{aligned} & \text { METHOD } \\ & \text { USED } \end{aligned}$ | EFF. DEG. FREEDOM | | CONfIDENCE LIMITS LOWER | - population UPPER |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 10 | | 0.329 | 41,555,947 | . $115113421 E+15$ | 1 | 57.00 | | 20,063,966 | 63,047,928 |
| 20 | | 0.284 | 2,213,876 | . $804319061 \mathrm{E}+12$ | 1 | 30.00 | | 382,532 | 4,045,220 |
| 30 | | 0.323 | 558,266,497 | . $563966837 \mathrm{E}+16$ | 1 | 65.00 | | 408,196,209 | 708,336,785 |
| 31 | | 0.423 | 50,267,075 | . $168793326 \mathrm{E}+16$ | 1 | 8.00 | | 0 | 145,007,851 |
| SUBTOTAL | | 0.331 | 608,533,572 | . $732760163 \mathrm{E}+16$ | | 63.51 | | 437.444.884 | 779,622,259 |
| 40 | | 0.164 | 122,770,465 | . $100682086 \mathrm{E}+16$ | 1 | 43.00 | | 58,743,195 | 186,797,735 |
| 41 | | 0.269 | 52,833,593 | . $174117578 \mathrm{E}+15$ | 1 | 30.00 | | 25,888,664 | 79,778,522 |
| 42 | | 0.103 | 121,901,192 | . $325545945 \mathrm{E}+16$ | 1 | 20.00 | | 2,881,054 | 240,921,330 |
| SUBTOTAL | | 0.158 | 297,505,250 | . $443639789 E+16$ | | 35.50 | | 162,194,571 | 432,815,928 |
| 50 | | 0.147 | 672,676,607 | $.100932302 \mathrm{E}+17$ | 1 | 26.00 | | 466,120,425 | 879,232,790 |
| 60 | | 0.254 | 756,847,216 | $.106368605 \mathrm{E}+17$ | 1 | 59.00 | | 550,468,612 | 963,225,821 |
| 61 | | 0.148 | 28,009,505 | . $816823008 \mathrm{E}+14$ | 1 | 6.00 | | 5,893,945 | 50,125,066 |
| SUBTOTAL | | 0.250 | 784,856,722 | . $107185428 \mathrm{E}+17$ | | 59.87 | | 577,795,931 | 991,917,513 |
| 71 | | 0.127 | 37,168,971 | . $234462615 \mathrm{E}+15$ | 1 | 24.00 | | 5,564,648 | 68,773,295 |
| 72 | | 0.072 | 220,547,670 | . $208337285 \mathrm{E}+16$ | 1 | 14.00 | | 122,641,334 | $318,454,006$ |
| 73 | | 0.096 | 227,233,121 | . $253462897 \mathrm{E}+16$ | 1 | 6.00 | | 104,038,664 | 350,427,578 |
| 74 | | 0.092 | 91,346,148 | . $389518998 \mathrm{E}+15$ | 1 | 12.00 | | 48,340,890 | 134,351,405 |
| SUBTOTAL | | 0.085 | 539,126,939 | $.500752082 \mathrm{E}+16$ | | 18.00 | | 390,452,114 | 687,801,763 |
| 81 | | 0.506 | 17.491,007 | . $595422011 \mathrm{E}+13$ | 1 | 46.00 | | 12,574,883 | 22,407,131 |
| 82 | | 0.311 | 5,689,147 | . $309469685 \mathrm{E}+13$ | 1 | 27.00 | | 2,079,320 | 9.298,975 |
| 83 | | 0.692 | 166,965 | . $142520848 \mathrm{E}+11$ | 1 | 30.00 | | 0 | 410,743 |
| 84 | | 0.907 | 1,467 | . $215353588 \mathrm{E}+07$ | 1 | 26.00 | | 0 | 4,485 |
| 100 | | 0.088 | 576,295,910 | . $524198344 E+16$ | 1 | 19.69 | | 425,266,291 | 727,325,529 |
| 200 | | 0.232 | 2,407,341,974 | . $326916902 \mathrm{E}+17$ | 1 | 147.67 | | 2,049,344,374 | 2,765,339,574 |
| 300 | | 0.204 | 2,983,637,884 | $.379336737 \mathrm{E}+17$ | 1 | 166.68 | | 2,598,007,427 | 3,369,268,340 |
| 400 | | 0.459 | 23,348,587 | . $906317120 \mathrm{E}+13$ | 1 | 72.99 | | 17,340,612 | 29,356,562 |
| TOTAL | | 0.206 | 3,006,986,471 | $.379427368 \mathrm{E}+17$ | | 166.76 | | 2,621,309,949 | 3,392,662,992 |

Table D.11.--Fl athead sole (Cont.). Section d, population number estimates by sex and centineter interval for the overal survey area.

| LENGTH(MM) | MALES | FEMALES | UNSEXED | TOTAL | PROPORTION | CUMULATIVE
 PROPORTION |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 70.0 | 537,642 | 0 | 254,842 | 792,484 | 0.00026 | 0.00026 |
| 80.0 | 958,628 | 0 | 182,831 | 1,141,459 | 0.00038 | 0.00064 |
| 90.0 | 2,147,811 | 189,403 | - 0 | 2,337,214 | 0.00078 | 0.00142 |
| 100.0 | 7.291,982 | 3,583,196 | 420,988 | 11,296,166 | 0.00376 | 0.00518 |
| 110.0 | 15,302,955 | 7,302,009 | 1,628,627 | 24,233,591 | 0.00806 | 0.01324 |
| 120.0 | 30,843, 164 | 18,113,301 | 2,376,508 | 51,332,973 | 0.01707 | 0.03031 |
| 130.0 | 31,297,107 | 25,627,459 | 8,726,640 | 65,651,206 | 0.02183 | 0.05214 |
| 140.0 | 53,748,315 | 54,781,470 | 27,742,743 | 136,272,528 | 0.04532 | 0.09746 |
| 150.0 | 75,510,276 | 72,327,368 | 24,992,806 | 172,830,451 | 0.05748 | 0.15494 |
| 160.0 | 78,637,520 | 83,733,107 | 13,144,260 | 175,514,886 | 0.05837 | 0.21330 |
| 170.0 | 59,391,007 | 78,948,622 | 3,353,756 | 141,693,384 | 0.04712 | 0.26043 |
| 180.0 | 48,548,894 | 67,260,008 | 2,495,732 | 118,304,634 | 0.03934 | 0.29977 |
| 190.0 | 48,151,229 | 83,571,993 | 1,192,394 | 132,915,616 | 0.04420 | 0.34397 |
| 200.0 | 46,675,475 | 78,081,819 | -1907 0 | 124,757,294 | 0.04149 | 0.38546 |
| 210.0 | 42,718,944 | 79,584,594 | 397,465 | 122,701,003 | 0.04081 | 0.42627 |
| 220.0 | 35,606,505 | 58,185,017 | 0 | 93,791,521 | 0.03119 | 0.45746 |
| 230.0 | 37,063,499 | 54,764,504 | 0 | 91,828,004 | 0.03054 | 0.48800 |
| 240.0 | 35,079,767 | 44,681,874 | 0 | 79,761,641 | 0.02653 | 0.51452 |
| 250.0 | 41,085,668 | 47,862,504 | 0 | 88,948,173 | 0.02958 | 0.54410 |
| 260.0 | 42,730,358 | 47,115,228 | 0 | 89,845,586 | 0.02988 | 0.57398 |
| 270.0 | 36,368,897 | 43,549,798 | 0 | 79,918,696 | 0.02658 | 0.60056 |
| 280.0 | 36,397,968 | 43,877,946 | 0 | 80,275,914 | 0.02670 | 0.62725 |
| 290.0 | 49,527,331 | 42,912.522 | 0 | 92,439,853 | 0.03074 | 0.65800 |
| 300.0 | 48,185,551 | 43,399,810 | 0 | 91,585,362 | 0.03046 | 0.68845 |
| 310.0 | 65,208,257 | 41,552,239 | 0 | 106,760,497 | 0.03550 | 0.72396 |
| 320.0 | 66,121,359 | 54,265,749 | 0 | 120,387, 107 | 0.04004 | 0.76399 |
| 330.0 | 68,969,517 | 52,666,842 | 0 | 121,636,359 | 0.04045 | 0.80444 |
| 340.0 | 67,436,140 | 52,640,005 | 0 | 120,076,145 | 0.03993 | 0.84438 |
| 350.0 | 52,406,108 | 57,256,265 | 0 | 109,662,373 | 0.03647 | 0.88085 |
| 360.0 | 31,939,684 | 57,147,217 | 0 | 89,086,901 | 0.02963 | 0.91047 |
| 370.0 | 20,018,446 | 50,233,396 | 0 | 70,251,843 | 0.02336 | 0.93384 |
| 380.0 | 13,196,200 | 40,251,742 | 0 | 53,447,942 | 0.01777 | 0.95161 |
| 390.0 | 5,162,276 | 33,295,394 | 0 | 38,457,670 | 0.01279 | 0.96440 |
| 400.0 | 3,160,514 | 27,027,047 | 0 | 30,187,561 | 0.01004 | 0.97444 |
| 410.0 | 2,341,667 | 18,324,481 | 0 | 20,666,148 | 0.00687 | 0.98131 |
| 420.0 | 185,189 | 20,660,224 | 0 | 20,845,413 | 0.00693 | 0.98824 |
| 430.0 | 227,016 | 13,029,946 | 0 | 13,256,962 | 0.00441 | 0.99265 |
| 440.0 | 86,825 | 9,143,747 | 0 | 9,230,572 | 0.00307 | 0.99572 |
| 450.0 | 47,428 | 4,971,476 | 0 | 5,018,905 | 0.00167 | 0.99739 |
| 460.0 | 23,429 | 2,396,643 | 0 | 2,420,072 | 0.00080 | 0.99820 |
| 470.0 | 8,928 | 1,040,191 | 0 | 1,049,119 | 0.00035 | 0.99854 |
| 480.0 | 35,359 | 681,350 | 0 | 716,710 | 0.00024 | 0.99878 |
| 490.0 | 17,680 | 924.798 | 0 | 942,477 | 0.00031 | 0.99910 |
| 500.0 | 0 | 27,486 | 0 | 27,486 | 0.00001 | 0.99911 |
| 510.0 | 0 | 471,003 | 0 | 471,003 | 0.00016 | 0.99926 |
| 520.0 | 0 | 3,691 | 0 | 3,691 | 0.00000 | 0.99926 |
| total | 1,300,398,517 | 1,617,464,487 | 86,909,591 | 3,004,772,595 | | |

Table D-12.--Alaska plaice. Section a, CPUE estimates by stratum.

| STRATUM | AREA SQ. MI. | SAMPLES | TOTAL HAULS | HAULS WITH CATCH | HAULS WITH NUMS. | $\begin{aligned} & \text { HAULS } \\ & \text { WITH } \\ & L-F \end{aligned}$ | MEAN CPUE KG/HA | VARIANCE MEAN CPUE KG/HA | MEAN CPUE NO/HA | VARIANCE MEAN CPUE NO/HA |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 10 | 22,704. | 2,627,943 | 58 | 50 | 50 | 37 | 22.28 | . $104928 \mathrm{E}+03$ | 44.51 | 248918E+03 |
| 20 | 11,962. | 1,384,553 | 31 | 31 | 31 | 24 | 17.15 | $.196807 E+02$ | 37.81 | .778217E+02 |
| 30 | 27,559. | 3,189,999 | 66 | 52 | 52 | 37 | 38.50 | .168909E+03 | 49.26 | . 197723E+03 |
| 31 | 2,558. | 296,105 | 9 | 6 | 6 | 0 | 2.68 | .516178E+00 | 2.13 | $.388486 \mathrm{E}+00$ |
| SUBTOTAL | 30,118. | 3,486,104 | 75 | 58 | 58 | 37 | 35.46 | $.141438 E+03$ | 45.25 | $.165564 E+03$ |
| 40 | 18,281. | 2,116,073 | 44 | 41 | 41 | 30 | 34.91 | .488853E+02 | 49.30 | . $132027 \mathrm{E}+03$ |
| 41 | 7,001. | 810,309 | 31 | 25 | 25 | 12 | 18.36 | . $219045 \mathrm{E}+02$ | 22.28 | . $325409 E+02$ |
| 42 | 6,154. | 712,328 | 21 | 15 | 15 | 13 | 15.19 | . $254497 \mathrm{E}+02$ | 17.40 | .420458E+02 |
| SUBTOTAL | 31,436. | 3,638,710 | 96 | 81 | 81 | 55 | 27.36 | . $185943 \mathrm{E}+02$ | 37.04 | .478760E+02 |
| 50 | 11,310. | 1,309,140 | 27 | 1 | 1 | 0 | 0.05 | .204043E-02 | 0.03 | .929358E-03 |
| 60 | 25,704. | 2,975,204 | 60 | 14 | 14 | 10 | 3.05 | . $151257 \mathrm{E}+01$ | 1.76 | . $492431 \mathrm{E}+00$ |
| 61 | 1,874. | 216,948 | 7 | 4 | 4 | 2 | 6.93 | . $165725 \mathrm{E}+02$ | 4.23 | .641905E+01 |
| SUBTOTAL | 27,578. | 3,192,153 | 67 | 18 | 18 | 12 | 3.32 | . 139051E+01 | 1.93 | . $457421 \mathrm{E}+00$ |
| 71 | 21,233. | 2,457,710 | 25 | 25 | 25 | 25 | 11.77 | . 179568E+02 | 20.10 | .217013E+02 |
| 72 | 12.215. | 1,413,893 | 15 | 4 | 4 | 4 | 8.84 | . $704239 \mathrm{E}+02$ | 13.98 | .184390E+03 |
| 73 | 5,494. | 635,915 | 7 | 3 | 3 | 2 | 0.45 | . $755630 \mathrm{E}-01$ | 0.37 | . $499121 \mathrm{E}-01$ |
| 74 | 6,202. | 717,847 | 13 | 3 | 3 | 3 | 0.13 | . $703463 \mathrm{E}-02$ | 0.15 | . $102924 \mathrm{E}-01$ |
| SUBTOTAL | 23,911. | 2,767,656 | 35 | 10 | 10 | 9 | 4.65 | . $183838 \mathrm{E}+02$ | 7.26 | .481257E+02 |
| 81 | 2,270. | 262.712. | 47 | 0 | 0 | 0 | 0.00 | 0. | 0.00 | 0. |
| 82 | 1,646. | 190,552 | 28 | 0 | 0 | 0 | 0.00 | 0. | 0.00 | 0. |
| 83 | 1,281. | ; 148,224 | 31 | 0 | 0 | 0 | 0.00 | 0. | 0.00 | 0. |
| 84 | 965. | -111.735 | 27 | 0 | 0 | 0 | 0.00 | 0. | 0.00 | 0. |
| 100 | 45,144. | 5,225,365 | 60 | 35 | 35 | 34 | 8.00 | $.912978 E+01$ | 13.30 | . 183019E+02 |
| 200 | 135,107. | 15,638,602 | 354 | 239 | 239 | 165 | 20.22 | .112101E+02 | 29.93 | . $184771 \mathrm{E}+02$ |
| 300 | 180,250. | 20,863,967 | 414 | 274 | 274 | 199 | 17.16 | .687081E+01 | 25.76 | $.115289 \mathrm{E}+02$ |
| 400 | 6,162. | 713,222 | 133 | 0 | 0 | 0 | 0.00 | 0. | 0.00 | 0. |
| TOTAL | 186,412. | 21,577,189 | 547 | 274 | 274 | 199 | 16.59 | $.642409 \mathrm{E}+01$ | 24.91 | . $107793 \mathrm{E}+02$ |

Table D. 12.--A aska pl ai ce (Cont.). Section b, bi onass estinates by stratum

Table D. 12. - Al aska plaice (Cont.). Section c, population number estimates by stratum

| STRATUM | MEAN | WT KG | POPULATION | VARIANCE POPULATION | METHOD USED | EFF. DEG. FREEDOM | 95\% CONFIDENCE LIMITS LOWER | S - POPULATION UPPER |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 10 | | 0.501 | 346,591,257 | . $150942022 \mathrm{E}+17$ | 1 | 57.00 | 100,487,324 | |
| 20 | | 0.454 | 155,109,270 | $.130991130 \mathrm{E}+16$ | 1 | 30.00 | $81,203,783$ | $229,014,757$ |
| 30 | | 0.782 | 465,589,854 | . $176668787 \mathrm{E}+17$ | 1 | 65.00 | 199,977,759 | 731,201,948 |
| 31 | | 1.261 | 1,868,103 | . $299080004 \mathrm{E}+12$ | 1 | 8.00 | 606,993 | 3,129,213 |
| SUBTOTAL | | 0.784 | 467,457,957 | . $176671778 \mathrm{E}+17$ | | 65.00 | 201,843,614 | 733,072,299 |
| 40 | | 0.708 | 309,132,056 | . $519095224 \mathrm{E}+16$ | 1 | 43.00 | 163,749,468 | 454,514,644 |
| 41 | | 0.824 | 53,504,896 | . $187608632 \mathrm{E}+15$ | 1 | 30.00 | 25,535,561 | 81,474,231 |
| 42 | | 0.873 | 36,717,894 | $.187328478 \mathrm{E}+15$ | 1 | 20.00 | 8,167,231 | 65,268,558 |
| SUBTOTAL | | 0.739 | 399,354,847 | $.556588935 \mathrm{E}+16$ | | 49.21 | 249,283,384 | 549,426,310 |
| 50 | | 1.482 | 118,260 | $.139854659 \mathrm{E}+11$ | 1 | 26.00 | 0 | 361,403 |
| 60 | | 1.735 | 15,519.541 | . $382737707 \mathrm{E}+14$ | 1 | 59.00 | 3,139,886 | |
| \% 61 | | 1.637 | 2,722,490 | . $265280420 E+13$ | 1 | 6.00 | 3,139,886 | 6,708,024 |
| SUBTOTAL | | 1.720 | 18,242,031 | $.409265749 \mathrm{E}+14$ | | 64.42 | 5,455,785 | 31,028,278 |
| 71 | | 0.586 | 146,370,573 | . $115098442 \mathrm{E}+16$ | 1 | 24.00 | 76,346,976 | 216,394,169 |
| 72 | | 0.632 | 58,564,992 | . $323663221 \mathrm{E}+16$ | 1 | 14.00 | 0 | |
| 73 | | 1.213 | 694,030 | $.177225535 \mathrm{E}+12$ | 1 | 6.00 | 0 | 1,724,172 |
| 74 | | 0.873 | 321,121 | . $465696426 \mathrm{E}+11$ | 1 | 12.00 | 0 | , 791,349 |
| SUBTOTAL | | 0.640 | 59,580,143 | $.323685600 \varepsilon+16$ | | 14.00 | 0 | 181,616,430 |
| 81 | | 0.000 | 0 | 0. | 1 | 0.00 | 0 | 0 |
| 82 | | 0.000 | 0 | 0. | 1 | 0.00 | 0 | 0 |
| 83 | | 0.000 | 0 | 0. | 1 | 0.00 | 0 | 0 |
| 84 | | 0.000 | 0 | 0. | 1 | 0.00 | 0 | 0 |
| 100 | | 0.601 | 205,950,715 | . $438784042 \mathrm{E}+16$ | 1 | 23.96 | 69,229,754 | 342,671,677 |
| 200 | | 0.675 | 1,386,873,622 | $.396781212 \mathrm{E}+17$ | 1 | 165.97 | 992,475,753 | 1,781,271,490 |
| 300 | | 0.666 | 1,592,824,337 | . $440659617 \mathrm{E}+17$ | 1 | 188.72 | 1,177,193,708 | 2,008,454,966 |
| 400 | | 0.000 | 0 | 0. | 1 | 0.00 | 0 | 0 |
| TOTAL | | 0.666 | 1,592,824,337 | .440659617E+17 | | 188.72 | 1,177,193,708 | 2,008,454,966 |

Table D.12.-A aska plaice (Cont.). Section d, population number estinates by sex and centineter length interval for the overal survey area.

| LENGTH(MM) | MALES | FEMALES | UNSEXED | TOTAL | PROPORTION | CUMULATIVE PROPORTION |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 110.0 | 0 | 135,402 | 0 | 135,402 | 0.00009 | 0.00009 |
| 120.0 | 659,374 | 736,148 | 0 | 1,395,522 | 0.00088 | 0.00096 |
| 130.0 | 277,532 | 1,674,093 | 0 | 1,951,626 | 0.00123 | 0.00219 |
| 140.0 | 814,796 | 834,305 | 0 | 1,649,101 | 0.00104 | 0.00322 |
| 150.0 | 648,888 | 1,096,134 | 0 | 1,745,021 | 0.00110 | 0.00432 |
| 160.0 | 1,503,944 | 953,874 | 0 | 2,457,818 | 0.00154 | 0.00586 |
| 170.0 | 790,326 | 1,527,821 | 0 | 2,318,147 | 0.00146 | 0.00732 |
| 180.0 | 1,387,939 | 1,886,666 | 0 | 3,274,605 | 0.00206 | 0.00937 |
| 190.0 | 2,235,947 | 2,646,889 | 0 | 4,882,836 | 0.00307 | 0.01244 |
| 200.0 | 2,596,962 | 3,268,565 | 0 | 5,865,527 | 0.00368 | 0.01612 |
| 210.0 | 3,774,939 | 5,059,531 | 0 | 8,834,470 | 0.00555 | 0.02167 |
| 220.0 | 5,863,873 | 4,711,394 | 0 | 10,575,267 | 0.00664 | 0.02831 |
| 230.0 | 6,043,357 | 5,363,025 | 0 | 11,406,382 | 0.00716 | 0.03547 |
| 240.0 | 11,505,970 | 8,058,460 | 0 | 19,564,430 | 0.01228 | 0.04775 |
| 250.0 | 8,738,565 | 7,820,119 | 0 | 16,558,684 | 0.01040 | 0.05815 |
| 260.0 | 15,180,193 | 13,499,451 | 0 | 28,679,644. | 0.01801 | 0.07615 |
| 270.0 | 18,595,982 | 13,168,942 | 0 | 31,764,924 | 0.01994 | 0.09609 |
| 280.0 | 21,179,240 | 14,595,797 | 0 | 35,775,037 | 0.02246 | 0.11855 |
| 290.0 | 24,866,498 | 17,784,439 | 0 | 42,650,937 | 0.02678 | 0.14533 |
| 300.0 | 27,468,475 | 20,206,923 | 0 | 47,675,398 | 0.02993 | 0.17526 |
| 310.0 | 55,501,573 | 22,481,625 | 0 | 77,983,197 | 0.04896 | 0.22422 |
| 320.0 | 75,075,996 | 19,398,740 | 0 | 94,474,736 | 0.05931 | 0.28353 |
| 330.0 | 101,959,581 | 24,959,104 | 0 | 126,918,685 | 0.07968 | 0.36321 |
| 340.0 | 120,019,556 | 21,525,952 | 0 | 141,545,508 | 0.08886 | 0.45208 |
| 350.0 | 105,895,441 | 27,408,984 | 0 | 133,304,425 | 0.08369 | 0.53577 |
| 360.0 | 70,340,542 | 26,556,941 | 0 | 96,897,482 | 0.06083 | 0.59680 |
| 370.0 | 45,365,056 | 31,545,912 | 0 | 76,910,968 | 0.04829 | 0.64489 |
| 380.0 | 34,131.482 | 36.116,714 | 0 | 70,248,196 | 0.04410 | 0.68899 |
| 390.0 | 7,661,576 | 39,869,501 | 0 | 47,531,076 | 0.02984 | 0.71883 |
| 400.0 | 6,273,877 | 45,447,108 | 0 | 51,720,985 | 0.03247 | 0.75130 |
| 410.0 | 1,443,088 | 58,245,326 | 0 | 59,688,415 | 0.03747 | 0.78878 |
| 420.0 | 227,052 | 52,056,510 | 0 | 52,283,562 | 0.03282 | 0.82160 |
| 430.0 | 240,339 | 52,940,352 | 0 | 53,180,691 | 0.03339 | 0.85499 |
| 440.0 | 335,131 | 53,300,035 | 0 | 53,635,166 | 0.03367 | 0.88866 |
| 450.0 | 0 0 | 55,288,687 | 0 | 55,288,687 | 0.03471 | 0.92337 |
| 460.0 | 0 | 39,031,913 | 0 | 39,031,913 | 0.02450 | 0.94788 |
| 470.0 | 0 | 31,815,922 | 0 | 31,815,922 | 0.01997 | 0.96785 |
| 480.0 | 0 | 18,410,630 | 0 | 18,410,630 | 0.01156 | 0.97941 |
| 490.0 | 0 | 10,236,406 | 0 | $\sim_{0}^{10,236,406}$ | 0.00643 | 0.98584 |
| 500.0 | 0 | 4,830,928 | 0 | \bigcirc - 4,830,928 | 0.00303 | 0.98887 |
| 510.0 | 0 | 5,001,717 | 0 | 5,001,717 | 0.00314 | 0.99201 |
| 520.0 | 0 | 7.777.911 | 0 | 7,777,911 | 0.00488 | 0.99689 |
| 530.0 | 0 | 164,980 | 0 | 164,980 | 0.00010 | 0.99700 |
| 540.0 | 0 | 1,440,214 | 0 | 1,440,214 | 0.00090 | 0.99790 |
| 550.0 | 0 | 786,809 | 0 | 786,809 | 0.00049 | 0.99840 |
| 560.0 | 0 | 252,489 | 0 | 252,489 | 0.00016 | 0.99855 |
| 570.0 | 0 | 63,011 | 0 | 63,011 | 0.00004 | 0.99859 |
| 580.0 | 0 | 252,489 | 0 | 252,489 | 0.00016 | 0.99875 |
| total | 778,603,088 | 812,234,885 | 0 | 1,590,837,974 | | |

| STRATUA | AREA SQ. MI . | SAMPLES | tOTAL HAULS | HAULS HITH CATCH | HAULS HITH NUHS. | $\begin{aligned} & \text { HAULS } \\ & \text { WITH } \\ & \text { L-F } \end{aligned}$ | MEAN CPUE KG/HA | VARIANCE MEAN CPUE KG/HA | MEAN CPUE NO/HA | VARIANCE MEAN CPUE NO/HA |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 10 | 22,704. | 2,627,943 | 58 | 0 | 0 | 0 | 0.00 | 0. | 0.00 | 0 |
| 20 | 11,962. | 1,384,553 | 31. | 0 | 0 | 0 | 0.00 | 0. | 0.00 | 0. |
| 30 | 27,559. | 3,189,999 | 66 | 0 | 0 | 0 | 0.00 | 0. | 0.00 | 0. |
| 31 | 2,558. | 296,105 | 9 | 0 | 0 | 0 | 0.00 | 0. | 0.00 | 0. |
| Subtotal | 30,118. | 3,486,104 | 75 | 0 | 0 | 0 | 0.00 | 0. | 0.00 | 0. |
| 40 | 18,281. | 2,116,073 | 44 | 6 | 6 | 4 | 0.01 | .104991E-03 | 0.11 | .527238E-02 |
| 41 | 7,001. | 810,309 | 31 | 0 | 0 | 0 | 0.00 | 0. | 0.00 | 0. |
| 42 | 6.154. | 712,328 | 21 | 8 | 8 | 8 | 0.06 | . $541153 \mathrm{E}-03$ | 0.37 | $.199774 \mathrm{E}-01$ |
| Subtotal | 31,436. | 3,638,710 | 96 | 14 | 14 | 12 | 0.02 | . $562463 \mathrm{E}-04$ | 0.13 | $.254869 \mathrm{E}-02$ |
| 50 | 11,310. | 1,309,140 | 27 | 2 | 2 | 1 | 0.07 | .306600E-02 | 0.02 | .120488E-03 |
| -60 | 25,704. | 2,975,204 | 60 | 24 | 24 | 23 | 1.15 | . $114657 \mathrm{E}+00$ | 1.68 | .294672E+00 |
| 61 | 1,874. | 216,948 | 7 | 5 | 5 | 4 | 1.40 | . $733363 \mathrm{E}+00$ | 2.41 | . $770093 \mathrm{E}+00$ |
| Subtotal | 27,578. | 3,192,153 | 67 | 29 | 29 | 27 | 1.17 | . $102989 \mathrm{E}+00$ | 1.73 | . $259537 \mathrm{E}+00$ |
| 71 | 21,233. | 2,457,710 | 25 | 0 | 0 | 0 | 0.00 | 0. | 0.00 | 0. |
| 72 | 12,215. | 1.413.893 | 15 | 5 | 5 | 3 | 0.04 | . 591905E-03 | 0.62 | $.144368 E+00$ |
| 73 | 5,494. | 635,915 | 7 | 7 | 7 | 7 | 1.55 | . $182710 \mathrm{E}+00$ | 9.20 | $.786241 \mathrm{E}+01$ |
| 74 | 6,202. | 717,847 | 13 | 11 | 11 | 11 | 0.08 | . $204830 \mathrm{E}-02$ | 1.06 | . $927264 \mathrm{E}-01$ |
| Subtotal | 23,911. | 2,767,656 | 35 | 23 | 23 | 21 | 0.40 | . $993806 \mathrm{E}-02$ | 2.71 | . $458994 \mathrm{E}+00$ |
| 81 | 2,270. | 262,712 | 47 | 45 | 45 | 45 | 20.57 | . $125045 \mathrm{E}+02$ | 6.02 | . $170117 \mathrm{E}+01$ |
| 82 | 1,646. | 190,552 | 28 | 23 | 23 | 22 | 22.92 | . $833328 \mathrm{E}+02$ | 5.26 | . $415446 \mathrm{E}+01$ |
| 83 | 1,281. | 148, 224 | 31 | 31 | 31 | 30 | 25.84 | . $132320 \mathrm{E}+02$ | 4.96 | . $552432 \mathrm{E}+00$ |
| 84 | 965. | 111,735 | 27 | 19 | 19 | 18 | 7.35 | . $373284 \mathrm{E}+01$ | 1.81 | . $254376 \mathrm{E}+00$ |
| 100 | 45,144. | 5,225,365 | 60 | 23 | 23 | 21 | 0.21 | .278800E-02 | 1.43 | $.128765 \mathrm{E}+00$ |
| 200 | 135,107. | 15,638,602 | 354 | 45 | 45 | 40 | 0.25 | .431558E-02 | 0.38 | . 109524E-01 |
| 300 | 180,250. | 20,863,967 | 414 | 68 | 68 | 61 | 0.24 | . 259948E-02 | 0.65 | .142301E-01 |
| 400 | 6,162. | 713,222 | 133 | 118 | 118 | 115 | 20.22 | . 830799E+01 | 4.94 | . $557460 \mathrm{E}+00$ |
| total | 186,412. | 21,577,189 | 547 | 186 | 186 | 176 | 0.90 | . 115078E-01 | 0.79 | . 139140E-01 |

Table D. 13. -- Greenl and turbot (Cont.). Section b, bi onass estimates by stratum

| STRATUM | BIOMASS MT | VARIANCE BIOMASS | EFF. DEG. FREEDOM | 95\% CONfIDENCE LIMITS LOWER | - biomass UPPER |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 10 | 0 | 0. | 0.00 | 0 | 0 |
| 20 | 0 | 0. | 0.00 | 0 | 0 |
| 30 | 0 | 0. | 0.00 | 0 | 0 |
| 31 | 0 | 0. | 0.00 | 0 | 0 |
| subtotal | 0 | 0. | 0.00 | 0 | 0 |
| 40 | 90 | . $412796083 E+04$ | 43.00 | 0 | 220 |
| 41 | 0 | 0. | 0.00 | 0 | 0 |
| 42 | 119 | .241102666E+04 | 20.00 | 16 | 221 |
| subtotal | 209 | .653898749E+04 | 62.25 | 47 | 371 |
| 50 | 286 | .461387756E+05 | 26.00 | 0 | 727 |
| 60 | 10,170 | . $891162141 \mathrm{E}+07$ | 59.00 | 4,197 | 16,144 |
| 61 | 900 | . $303077621 \mathrm{E}+06$ | 6.00 | | 2,248 17.140 |
| subtotal | 11,071 | . $921469903 \mathrm{E}+07$ | 62.37 | 5,001 | 17,140 |
| 71 | 0 | 0. | 0.00 | 0 | 0 |
| 72 | 153 | . $103898005 \mathrm{E}+05$ | 14.00 | | 372 |
| 73 | 2,929 | . $648759345 \mathrm{E}+06$ | 6.00 | 958 | 4,900 |
| 74 | 177 | . $926783615 \mathrm{E}+04$ | 12.00 | ${ }^{\circ} \mathrm{O}$ | 5 387 |
| SUBTOTAL | 3,259 | . $668416981 \mathrm{E}+06$ | 6.37 | 1,259 | 5,260 |
| 81 | 16,015 | . $757786246 \mathrm{E}+07$ | 46.00 | 10,469 | 21,561 |
| 82 | 12,942 | . $265683582 \mathrm{E}+08$ | 27.00 | 2,365 | 23,519 |
| 83 | 11,348 | . $255259344 \mathrm{E}+07$ | 30.00 | 8,085 | 14,610 |
| 84 | 2,432 | .409203348E+06 | 26.00 | 1,117 | 3,748 |
| 100 | 3,259 | . $668416981 \mathrm{E}+06$ | 6.37 | 1,259 | 5,260 |
| 200 | 11,565 | .926737679E+07 | 63.08 | 5,480 | 17.651 |
| 300 | 14,825 | . $993579377 \mathrm{E}+07$ | 68.96 | 8,530 | 21,119 |
| 400 | 42,737 | . $371080174 \mathrm{E}+08$ | 49.86 | 30,490 | 54,985 |
| total | 57,562 | . $470438112 \mathrm{E}+08$ | 76.19 | 43,881 | 71,243 |

Table D. 13. -- Greenl and turbot (Cont.). Section c, population number estimates by strat um

| SIRATUM | MEAN | HT KG | POPULATION | VARIANCE POPULATION | METHOD USED | EFF. DEG. FREEDOM | | CONFIDENCE LIMITS LOWER | - POPULATION UPPER |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 10 | | 0.000 | 0 | 0. | 1 | 0.00 | | 0 | 0 |
| 20 | | 0.000 | 0 | 0. | 1 | 0.00 | | 0 | 0 |
| 30 | | 0.000 | 0 | 0. | 1 | 0.00 | | 0 | 0 |
| 31 | | 0.000 | 0 | 0. | 1 | 0.00 | | 0 | 0 |
| SUBTOTAL | | 0.000 | 0 | 0. | 1 | 0.00 | | 0 | 0 |
| 40 | | 0.136 | 664.134 | .207295270E+12 | 1 | 43.00 | | 0 | 1,582,855 |
| 41 | | 0.000 | 0 | 0. | 1 | 0.00 | | 0 | 0 |
| 42 | | 0.153 | 776,784 | $.890064185 \mathrm{E}+11$ | 1 | 20.00 | | 154.448 | 1,399,120 |
| SUBTOTAL | | 0.145 | 1,440,918 | . $296301689 E+12$ | 1 | 62.92 | | 352,790 | 2,529,045 |
| 50 | | 4.688 | 60,934 | . $181316488 \mathrm{E}+10$ | 1 | 26.00 | | 0 | 148,481 |
| 60 | | 0.688 | 14,783,282 | . $229031286 \mathrm{E}+14$ | 1 | 59.00 | | 5.206.814 | 24.359,750 |
| 61 | | 0.581 | 1,549,020 | . $318256992 \mathrm{E}+12$ | 1 | 6.00 | | 168,563 | 2,929,477 |
| SUBTOTAL | | 0.678 | 16,332,302 | . 232213856 + 14 | 1 | 60.54 | | 6,696,194 | 25,968,410 |
| 71 | | 0.000 | 0 | 0. | 1 | 0.00 | | 0 | 0 |
| 72 | | 0.059 | 2,610,419 | . $253412216 \mathrm{E}+13$ | 1 | 14.00 | | 0 | 6,025,028 |
| 73 | | 0.169 | 17,344,007 | . $279174648 \mathrm{E}+14$ | 1 | 6.00 | | 4,414,798 | 30,273,216 |
| 74 | | 0.078 | 2,260,744 | . $419554993 \mathrm{E}+12$ | 1 | 12.00 | | 849,339 | 3,672,149 |
| SUBTOTAL | | 0.147 | 22,215,169 | . $308711420 \mathrm{E}+14$ | 1 | 7.31 | | 9,074,803 | 35,355,536 |
| 81 | | 3.417 | 4,686,766 | . $103093155 \mathrm{E}+13$ | 1 | 46.00 | | 2,641,144 | 6,732,387 |
| 82 | | 4.361 | 2,967,727 | . $132453423 \mathrm{E}+13$ | 1 | 27.00 | | 606,113 | 5,329,341 |
| 83 | | 5.209 | 2,178,282 | . $106570310 \mathrm{E}+12$ | 1 | 30.00 | | 1,511,668 | 2,844,895 |
| 84 | | 4.061 | 598,876 | .278853806E+11 | 1 | 26.00 | | 255,547 | 942,206 |
| 100 | | 0.147 | 22,215,169 | $.308711420 \mathrm{E}+14$ | 1 | 7.31 | | 9,074,803 | 35,355,536 |
| 200 | | 0.648 | 17,834,153 | . $235195004 \mathrm{E}+14$ | 1 | 62.09 | | 8,138,005 | 27,530,302 |
| 300 | | 0.370 | 40,049,323 | . $543906424 \mathrm{E}+14$ | 1 | 21.24 | | 24,709,320 | 55,389,325 |
| 400 | | 4.097 | 10,431,651 | $.248992148 \mathrm{E}+13$ | 1 | 70.06 | | 7,281,013 | 13,582,288 |
| TOTAL | | 1.140 | 50,480,973 | $.568805639 \mathrm{E}+14$ | | 23.21 | | 34,876,740 | 66,085,207 |

Table D. 13.-- Greenl and turbot (Cont.). Section d, population number estimates by sex and centineter length interval for the overall survey area.

| LENGTH(MM) | MALES | FEMALES | UNSEXED | TOTAL | PROPORTION | CUMULATIVE
 PROPORTION |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 100.0 | 35,171 | 0 | 126,136 | 161,308 | 0.00320 | 0.00320 |
| 110.0 | 152,463 | 0 | 417,400 | 569,863 | 0.01129 | 0.01448 |
| 120.0 | 1,674,141 | 533,975 | 578,024 | 2,786,141 | 0.05519 | 0.06968 |
| 130.0 | 786,680 | 1,089,446 | 287,708 | 2,163,834 | 0.04286 | 0.11254 |
| 140.0 | 1,489,005 | 361,044 | 84,304 | 1,934,352 | 0.03832 | 0.15086 |
| 150.0 | 182,267 | 351,925 | 0 | 534,192 | 0.01058 | 0.16144 |
| 160.0 | 124,138 | 64,889 | 0 | 189,027 | 0.00374 | 0.16519 |
| 170.0 | 491,890 | 123,336 | 0 | 615,226 | 0.01219 | 0.17737 |
| 180.0 | 160,801 | 126,347 | 0 | 287,148 | 0.00569 | 0.18306 |
| 190.0 | 57,461 | 151,243 | 0 | 208,704 | 0.00413 | 0.18720 |
| 200.0 | 120,325 | 264,218 | 0 | 384,543 | 0.00762 | 0.19481 |
| 210.0 | 671,112 | 63,174 | 0 | 734,285 | 0.01455 | 0.20936 |
| 220.0 | 542,941 | 335,077 | 0 | 878,018 | 0.01739 | 0.22675 |
| 230.0 | 592,243 | 400,316 | 0 | 992,558 | 0.01966 | 0.24641 |
| 240.0 | 199, 123 | 733,568 | 0 | 932,691 | 0.01848 | 0.26489 |
| 250.0 | 1,274,586 | 866,381 | 0 | 2,140,967 | 0.04241 | 0.30730 |
| 260.0 | 1,014,234 | 721,302 | 0 | 1,735,536 | 0.03438 | 0.34168 |
| 270.0 | 489.438 | 426,172 | 0 | 915,610 | 0.01814 | 0.35982 |
| 280.0 | 1,314,483 | 1,724,886 | 0 | 3,039,369 | 0.06021 | 0.42003 |
| 290.0 | 1,523,659 | 1,634,755 | 0 | 3,158,414 | 0.06257 | 0.48259 |
| 300.0 | 808,720 | 712,144 | 0 | 1,520,864 | 0.03013 | 0.51272 |
| 310.0 | 854,061 | 606,409 | 0 | 1,460,470 | 0.02893 | 0.54165 |
| 320.0 | 1,010,013 | 1,231,782 | 0 | 2,241,794 | 0.04441 | 0.58606 |
| 330.0 | 1,249,635 | 526,573 | 0 | 1,776,208 | 0.03519 | 0.62125 |
| 340.0 | 708,575 | 450,744 | 0 | 1,159,318 | 0.02297 | 0.64421 |
| 350.0 | 860,326 | 420,205 | 0 | 1,280,531 | 0.02537 | 0.66958 |
| 360.0 | 258,020 | 23,180 | 0 | 281,200 | 0.00557 | 0.67515 |
| 370.0 | 353,930 | + 0 | 0 | 353,930 | 0.00701 | 0.68216 |
| 380.0 | 58, 234 | 102,740 | 0 | 160,974 | 0.00319 | 0.68535 |
| 390.0 | 95,654 | 142,853 | 0 | 238,507 | 0.00472 | 0.69007 |
| 400.0 | 0 | 131,933 | 0 | 131,933 | 0.00261 | 0.69269 |
| 410.0 | 41,454 | 58,234 | 0 | 99.688 | 0.00197 | 0.69466 |
| 420.0 | 69,808 | 427,744 | 0 | 497,552 | 0.00986 | 0.70452 |
| 430.0 | 65,608 | 438,908 | 0 | 504,516 | 0.00999 | 0.71451 |
| 440.0 | 178,885 | 294,279 | 0 | 473,164 | 0.00937 | 0.72389 |
| 450.0 | 380,572 | 55,919 | 0 | 436,492 | 0.00865 | 0.73253 |
| 460.0 | 32,317 | 270,717 | 0 | 303,034 | 0.00600 | 0.73853 |
| 470.0 | 7,166 | 324,081 | 0 | 331, 247 | 0.00656 | 0.74510 |
| 480.0 | 72,566 | 739,645 | 0 | 812,212 | 0.01609 | 0.76119 |
| 490.0 | 0 | 74,748 | 0 | 74,748 | 0.00148 | 0.76267 |
| 500.0 | 41.737 | 0 | 0 | 41,737 | 0.00083 | 0.76349 |
| 510.0 | 17,558 | 0 | 0 | 17,558 | 0.00035 | 0.76384 |
| 520.0 | 72,479 | 0 | 0 | 72,479 | 0.00144 | 0.76528 |
| 530.0 | 7,888 | 0 | 0 | 7,888 | 0.00016 | 0.76543 |
| 540.0 | 103,444 | 0 | 0 | 103,444 | 0.00205 | 0.76748 |
| 550.0 | 36,404 | 7. 166 | 0 | 43,570 | 0.00086 | 0.76835 |
| 560.0 | 100,261 | 4,021 | 0 | 104,282 | 0.00207 | 0.77041 |
| 570.0 | 215,375 | 189,011 | 0 | 404,386 | 0.00801 | 0.77842 |
| 580.0 | 187,253 | 181,845 | 0 | 369,098 | 0.00731 | 0.78573 |

Table D.13.-- Greenl and turbot (Cont.). Section d, population number estimates by sex and centineter length interval for the overall survey area.

| LENGTH(MM) | MALES | FEMALES | UNSEXED | TOTAL | PROPORTION | CUMULATIVE PROPORTION |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 590.0 | 285,928 | 0 | 0 | 285,928 | 0.00566 | 0.79140 |
| 600.0 | 365,228 | 65,171 | 0 | 430,399 | 0.00853 | 0.79992 |
| 610.0 | 557,271 | 4,021 | 0 | 561,293 | 0.01112 | 0.81104 |
| 620.0 | 461,359 | 103,423 | 0 | 564,781 | 0.01119 | 0.82223 |
| 630.0 | 506,131 | 32,317 | 0 | 538,448 | 0.01067 | 0.83290 |
| 640.0 | 748,193 | 44,670 | 0 | 792,863 | 0.01571 | 0.84860 |
| 650.0 | 655,938 | 19,931 | 0 | 675,868 | 0.01339 | 0.86199 |
| 660.0 | 491,582 | 60,686 | 0 | 552,268 | 0.01094 | 0.87293 |
| 670.0 | 403,623 | 30,658 | 0 | 434,281 | 0.00860 | 0.88153 |
| 680.0 | 336,738 | 39,741 | 0 | 376,479 | 0.00746 | 0.88899 |
| 690.0 | 291,749 | 69,724 | 0 | 361,473 | 0.00716 | 0.89615 |
| 700.0 | 169,813 | 31,672 | 0 | 201,485 | 0.00399 | 0.90014 |
| 710.0 | 106,252 | 40,079 | 0 | 146,332 | 0.00290 | 0.90304 |
| 720.0 | 28,325 | 73,420 | 0 | 101,745 | 0.00202 | 0.90506 |
| 730.0 | 147,585 | 43,560 | 0 | 191,145 | 0.00379 | 0.90885 |
| 740.0 | 24,191 | 46,244 | 0 | 70,434 | 0.00140 | 0.91024 |
| 750.0 | 12,987 | 127,910 | 0 | 140,897 | 0.00279 | 0.91303 |
| 760.0 | 9,199 | 142,501 | 0 | 151,700 | 0.00301 | 0.91604 |
| 770.0 | 15,499 | 285,829 | 0 | 301,328 | 0.00597 | 0.92201 |
| 780.0 | 16,819 | 241,627 | 0 | 258,446 | 0.00512 | 0.92713 |
| 790.0 | 5,382 | 201,363 | 0 | 206,745 | 0.00410 | 0.93122 |
| 800.0 | 4,952 | 237,083 | 0 | 242,035 | 0.00479 | 0.93602 |
| 810.0 | 0 | 305,395 | 0 | 305,395 | 0.00605 | 0.94207 |
| 820.0 | 0 | 328,163 | 0 | 328,163 | 0.00650 | 0.94857 |
| 830.0 | 323,960 | 265,481 | 0 | 589,441 | 0.01168 | 0.96024 |
| 840.0 | 0 | 284,133 | 0 | 284,133 | 0.00563 | 0.96587 |
| 850.0 | 6,699 | 174,311 | 0 | 181,010 | 0.00359 | 0.96946 |
| 860.0 | 6,059 | 290,499 | 0 | 296,558 | 0.00587 | 0.97533 |
| 870.0 | 1,516 | 228,594 | 0 | 230,110 | 0.00456 | 0.97989 |
| 880.0 | 0 | 222,934 | 0 | 222,934 | 0.00442 | 0.98431 |
| 890.0 | 0 | 174,819 | 0 | 174,819 | 0.00346 | 0.98777 |
| 900.0 | 0 | 109,161 | 0 | 109,161 | 0.00216 | 0.98993 |
| 910.0 | 0 | 123,429 | 0 | 123,429 | 0.00245 | 0.99238 |
| 920.0 | 0 | 88,052 | 0 | 88,052 | 0.00174 | 0.99412 |
| 930.0 | 0 | 68,070 | 0 | 68,070 | 0.00135 | 0.99547 |
| 940.0 | 0 | 83,305 | 0 | 83,305 | 0.00165 | 0.99712 |
| 950.0 | 0 | 35,479 | 0 | 35,479 | 0.00070 | 0.99782 |
| 960.0 | 0 | 25,238 | 0 | 25,238 | 0.00050 | 0.99832 |
| 970.0 | 0 | 30,701 | 0 | 30,701 | 0.00061 | 0.99893 |
| 980.0 | 0 | 19,124 | 0 | 19,124 | 0.00038 | 0.99931 |
| 990.0 | 0 | 21,146 | 0 | 21.146 | 0.00042 | 0.99973 |
| 1010.0 | 0 | 13,722 | 0 | 13,722 | 0.00027 | 1.00000 |
| total | 26,767,080 | 22,220,322 | 1,493,572 | 50,480,973 | | |

Table D. 14.--Arrout ooth flounder. Section a, CPUE estinates by stratum

| STRATUM | AREA SQ. MI. | SAMPLES | IOTAL HAULS | HAULS WITH CATCH | HAULS WITH NUMS. | HAULS WITH L-F | MEAN CPUE KG/HA | Variance mean cpue KG/HA | MEAN CPUE NO/HA | VARIANCE MEAN CPUE NO/HA |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 10 | 22,704. | 2,627,943 | 58 | 6 | 6 | 3 | 0.13 | .101778E-01 | 0.96 | . $586952 \mathrm{E}+00$ |
| 20 | 11,962. | 1,384,553 | 31 | 0 | 0 | 0 | 0.00 | 0. | 0.00 | 0. |
| 30 | 27,559. | 3,189,999 | 66 | 40 | 40 | 30 | 6.36 | .472232E+01 | 18.17 | . $269251 \mathrm{E}+02$ |
| 31 | 2,558. | 296,105 | 9 | 9 | 9 | 7 | 19.85 | $.125829 \mathrm{E}+03$ | 67.98 | .900785E+03 |
| SUBTOTAL | 30,118. | 3,486,104 | 75 | 49 | 49 | 37 | 7.51 | .486198E+01 | 22.40 | . $290442 \mathrm{E}+02$ |
| 40 | 18,281. | 2,116,073 | 44 | 5 | 5 | 1 | 0.14 | . 151813E-01 | 0.51 | . 205869E+00 |
| 41 | 7,001. | 810,309 | 31 | 26 | 26 | 13 | 5.20 | -183529E+01 | 31.35 | .187552E+03 |
| 42 | 6,154. | 712,328 | 21 | 1 | 1 | 1 | 0.03 | .677723E-03 | 0.03 | . $980033 \mathrm{E}-03$ |
| SUBTOTAL | 31,436. | 3,638,710 | 96 | 32 | 32 | 15 | 1.25 | .961750E-01 | 7.28 | $.937062 E+01$ |
| 50 | 11,310. | 1,309,140 | 27 | 27 | 27 | 26 | 23.72 | $.576611 \mathrm{E}+01$ | 59.75 | . $469351 \mathrm{E}+02$ |
| 60 | 25,704. | 2,975,204 | 60 | 57 | 57 | 47 | 13.64 | .676149E+01 | 25.67 | .297182E+02 |
| 61 | 1,874. | 216,948 | 7 | 5 | 5 | 3 | 3.20 | .173815E+01 | 4.20 | . $512110 \mathrm{E}+01$ |
| SUBTOTAL | 27,578. | 3,192,153 | 67 | 62 | 62 | 50 | 12.93 | $.588169 \mathrm{E}+01$ | 24.21 | . 258397E+02 |
| 71 | 21,233. | 2,457,710 | 25 | 0 | 0 | 0 | 0.00 | 0. | 0.00 | 0. |
| 72 | 12,215. | 1,413,893 | 15 | 0 | 0 | 0 | 0.00 | 0. | 0.00 | 0. |
| 73 | 5,494. | 635,915 | 7 | 1 | 1 | 0 | 0.07 | .491249E-02 | 0.06 | . 382026E-02 |
| 74 | 6,202. | 717,847 | 13 | 0 | 0 | 0 | 0.00 | 0. | 0.00 | 0. |
| SUBTOTAL | 23,911. | 2,767,656 | 35 | 1 | 1 | 0 | 0.02 | . 259344E-03 | 0.01 | .201682E-03 |
| 81 | 2,270. | 262,712 | 47 | 47 | 47 | 32 | 21.72 | . $999308 \mathrm{E}+01$ | 12.22 | . 278825E+01 |
| 82 | 1,646. | 190,552 | 28 | 26 | 26 | 12 | 21.54 | . $163201 \mathrm{E}+02$ | 13.95 | . $685882 \mathrm{E}+01$ |
| 83 | 1,281. | 148,224 | 31 | 24 | 24 | 14 | 2.76 | . $384969 \mathrm{E}+00$ | 1.52 | .107110E+00 |
| 84 | 965. | 111,735 | 27 | 14 | 14 | 12 | 0.84 | .511323E-01 | 0.52 | .231955E-01 |
| 100 | 45,144. | 5,225,365 | 60 | 1 | 1 | 0 | 0.01 | .727556E-04 | 0.01 | . 565793E-04 |
| 200 | 135,107. | 15,638,602 | 354 | 176 | 176 | 131 | 6.61 | . $532563 \mathrm{E}+00$ | 16.79 | . $337265 E+01$ |
| 300 | 180,250. | 20,863,967 | 414 | 177. | 177 | 131 | 4.96 | . 299212E+00 | 12.59 | . $189485 \mathrm{E}+01$ |
| 400 | 6,162. | 713,222 | 133 | 111 | 111 | 70 | 14.46 | . 253866E+01 | 8.63 | . $873083 \mathrm{E}+00$ |
| total | 186,412. | 21,577,189 | 547 | 288 | 288 | 201 | 5.27 | . $282532 \mathrm{E}+00$ | 12.46 | . 177261E+01 |

Table D. 14. -- Arrout ooth flounder (Cont.). Section b, bi onass estimates by stratum

Table D. 14.--Arrout ooth flounder (Cont.). Section c, population number estimates by stratum

| STRATUM | MEAN | WT KG | POPULATION | VARIANCE POPULATION | METHOD USED | EFF. DEG. FREEDOM | | CONFIDENCE LIMITS LOWER | - POPULATION UPPER |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 10 | | 0.136 | 7,456,772 | . $355923108 \mathrm{E}+14$ | 1 | 57.00 | | 0 | 19,407,423 |
| 20 | | 0.000 | 0 | 0. | 1 | 0.00 | | 0 | 19,407,423 |
| 30 | | 0.350 | 171,791,413 | . $240580733 \mathrm{E}+16$ | 1 | 65.00 | | 73,775,101 | 269,807,724 |
| 31 | | 0.292 | 59,645,219 | . $693479165 E+15$ | 1 | 8.00 | | ,3,775,10 | 120,371,406 |
| SUBTOTAL | | 0.335 | 231,436,632 | . $309928650 \mathrm{E}+16$ | | 64.40 | | 120,168,388 | 342,704,875 |
| 40 | | 0.280 | 3,183.206 | . $809422074 E+13$ | 1 | 43.00 | | 0 | 8,924,058 |
| 41 | | 0.166 | 75,267,853 | . $108129594 \mathrm{E}+16$ | 1 | 30.00 | | 8,120,635 | 142,415,071 |
| 42 | | 0.832 | 666,079 | . $436638722 \mathrm{E}+10$ | 1 | 20.00 | | ,120,630 | 1203,919 |
| SUBTOTAL | | 0.171 | 78,517,137 | . $108939452 \mathrm{E}+16$ | | 30.45 | | 11,118,932 | 145,915,343 |
| 50 | | 0.397 | 231,792,695 | . $706304911 \mathrm{E}+15$ | 1 | 26.00 | | 177,151,621 | 286,433,768 |
| 60 | | 0.532 | 226,284,793 | . $230982030 \mathrm{E}+16$ | 1 | 59.00 | | 130,113,150 | |
| 61 | | 0.762 | 2,701,921 | . $211639928 \mathrm{E}+13$ | 1 | 6.00 | | 130,113, 0 | $\begin{array}{r} 6,261,780 \end{array}$ |
| SUBTOTAL | | 0.534 | 228,986,714 | . $231193670 E+16$ | | 59.11 | | 132,771,021 | 325,202,406 |
| 71 | | 0.000 | 0 | 0. | 1 | 0.00 | | 0 | 0 |
| 72 | | 0.000 | 0 | 0. | 1 | 0.00 | | 0 | 0 |
| 73 | | 1.134 | 116.468 | . $135647913 \mathrm{E}+11$ | 1 | 6.00 .. | | 0 | 401,465 |
| 74 | | 0.000 | 116.460 | 0. | 1 | 0.00 | | 0 | 401,465 |
| SUBTOTAL | | 1.134 | 116,468 | $.135647913 \mathrm{E}+11$ | | 6.00 | | 0 | 401,465 |
| 81 | | 1.777 | 9,514,617 | . $168971526 \mathrm{E}+13$ | 1 | 46.00 | | 6,895,728 | 12,133,506 |
| 82 | | 1.544 | 7,876,929 | . $218674613 E+13$ | 1 | 27.00 | | 4,842,503 | 10,911,355 |
| 83 | | 1.811 | 668,059 | . $206626251 \mathrm{E}+11$ | 1 | 30.00 | | 374,532 | 961,587 |
| 84 | | 1.632 | 171,198 | . $254275120 \mathrm{E}+10$ | 1 | 26.00 | | 67,523 | 274,874 |
| 100 | | 1.134 | 116,468 | . $135647913 \mathrm{E}+11$ | 1 | 6.00 | | 0 | 401,465 |
| 200 | | 0.394 | 778,189,950 | . $724251494 \mathrm{E}+16$ | 1 | 176.15 | | 609,688,995 | 946,690,904 |
| 300 | | 0.394 | 778,306,418 | . $724252851 \mathrm{E}+16$ | 1 | 176.16 | | 609,805,305 | 946,807,530 |
| 400 | | 1.676 | 18,230,804 | $.389966677 \mathrm{E}+13$ | 1 | 63.58 | | 14.283,922 | 22,177,685 |
| total | | 0.423 | 796,537,221 | $.724642817 \mathrm{E}+16$ | | 176.35 | | 627,990,751 | 965,083,691 |

Table D. 14. - Arrout ooth flounder (Cont.). Section d, population number estimates by sex and centineter length interval for the overall survey area.

| LENGTH(MM) | MALES | FEMALES | UNSEXED | TOTAL | PROPORTION | cumulative PROPORTION |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 90.0 | 0 | 52,608 | 0 | 52,608 | 0.00007 | 0.00007 |
| 100.0 | 301,664 | 115,761 | 0 | 417,425 | 0.00052 | 0.00059 |
| 110.0 | 637,967 | 139,958 | 0 | 777,925 | 0.00098 | 0.00157 |
| 120.0 | 372,209 | 271,703 | 0 | 643,913 | 0.00081 | 0.00238 |
| 130.0 | 771,916 | 391,595 | 288,632 | 1,452,143 | 0.00182 | 0.00420 |
| 140.0 | 1,336,018 | 741,284 | 0 | 2,077,302 | 0.00261 | 0.00681 |
| 150.0 | 813,164 | 1,653,028 | 0 | 2,466,193 | 0.00310 | 0.00990 |
| 160.0 | 5,682,813 | 2,846,964 | 0 | 8,529,777 | 0.01071 | 0.02061 |
| 170.0 | 9,548,088 | 8,209,106 | 340,629 | 18,097,823 | 0.02272 | 0.04333 |
| 180.0 | 13,066,673 | 21,176,464 | 0 | 34,243,137 | 0.04299 | 0.08632 |
| 190.0 | 14,357,039 | 31,580,851 | 0 | 45,937,889 | 0.05767 | 0.14399 |
| 200.0 | 10,938,887 | 26,693,991 | 0 | 37,632,878 | 0.04725 | 0.19124 |
| 210.0 | 5,398,428 | 14,049,455 | 0 | 19,447,884 | 0.02442 | 0.21565 |
| 220.0 | 3,070,076 | 8,421,550 | 0 | 11,491,626 | 0.01443 | 0.23008 |
| 230.0 | 4,164,476 | 5,934,952 | 0 | 10,099,428 | 0.01268 | 0.24276 |
| 240.0 | 3,498,343 | 3,749,863 | 0 | 7,248,206 | 0.00910 | 0.25186 |
| 250.0 | 4,794,626 | 3,609,093 | 0 | 8,403,719 | 0.01055 | 0.26241 |
| 260.0 | 6,371,460 | 5,600,018 | 0 | 11,971,478 | 0.01503 | 0.27744 |
| 270.0 | 9,281,241 | 8,672,340 | 0 | 17,953,581 | 0.02254 | 0.29998 |
| 280.0 | 4,980,384 | 12,480,807 | 0 | 17,461,191 | 0.02192 | 0.32190 |
| 290.0 | 7,880,539 | 12,521,572 | 0 | 20,402,111 | 0.02561 | 0.34751 |
| 300.0 | 9:406,691 | 12,016,285 | 0 | 21,422,976 | 0.02690 | 0.37441 |
| 310.0 | 12,503,816 | 14,890,835 | 0 | 27,394,650 | 0.03439 | 0.40880 |
| 320.0 | 12,584,044 | 15,531,261 | 0 | 28,115,305 | 0.03530 | 0.44410 |
| 330.0 | 16,058,481 | 20,433,571 | 0 | 36,492,052 | 0.04581 | 0.48991 |
| 340.0 | 19,358,641 | 26,543,737 | 0 | 45,902,378 | 0.05763 | 0.54754 |
| 350.0 | 16,750,431 | 30,875,344 | 0 | 47,625,775 | 0.05979 | 0.60733 |
| 360.0 | 13,236,611 | 33,548,054 | 0 | 46,784,665 | 0.05874 | 0.66607 |
| 370.0 | 7,989,546 | 29,933,723 | 0 | 37,923,268 | 0.04761 | 0.71368 |
| 380.0 | 7,742,837 | 17,665,560 | 0 | 25,408,397 | 0.03190 | 0.74557 |
| 390.0 | 6,079,154 | 13,102,982 | 0 | 19,182,136 | 0.02408 | 0.76966 |
| 400.0 | 7,911,502 | 14,679,342 | 0 | 22,590,844 | 0.02836 | 0.79802 |
| 410.0 | 4,038,273 | 11,773,990 | 0 | 15,812,263 | 0.01985 | 0.81787 |
| 420.0 | 4,804,056 | 10,329,267 | 0 | 15,133,323 | 0.01900 | 0.83687 |
| 430.0 | 4,247,843 | 13,687,401 | 0 | 17,935,244 | 0.02252 | 0.85938 |
| 440.0 | 3,725,220 | 11,589,456 | 0 | 15,314,676 | 0.01923 | 0.87861 |
| 450.0 | 3,767,472 | 7,678,667 | 0 | 11,446,139 | 0.01437 | 0.89298 |
| 460.0 | 3,027,565 | 5,395,935 | 0 | 8,423,500 | 0.01058 | 0.90356 |
| 470.0 | 1,623,080 | 9,128,001 | 0 | 10,751,080 | 0.01350 | 0.91705 |
| 480.0 | 1,035,957 | 5,255,409 | 0 | 6,291,366 | 0.00790 | 0.92495 |
| 490.0 | 1,187,176 | 6,438,784 | 0 | 7,625,961 | 0.00957 | 0.93453 |
| 500.0 | 1,591,558 | 7,881,154 | 0 | 9,472,712 | 0.01189 | 0.94642 |
| 510.0 | 824,433 | 8,386,799 | 0 | 9,211,232 | 0.01156 | 0.95798 |
| 520.0 | 508,170 | 5,932,151 | 0 | 6,440,321 | 0.00809 | 0.96607 |
| 530.0 | 701,491 | 5,315,685 | 0 | 6,017,176 | 0.00755 | 0.97362 |
| 540.0 | 425,158 | 4,179,747 | 0 | 4,604,905 | 0.00578 | 0.97940 |
| 550.0 | 80,570 | 1,977,118 | 0 | 2,057,688 | 0.00258 | 0.98199 |

Table D. 14.--Arrout ooth flounder (Cont.). Section d, population number estimates by sex and centinerter Length inverval for the overall survey area.

| LENGTH(MM) | MALES | FEMALES | UNSEXED | TOTAL | PROPORTION | CUMULATIVE PROPORTION |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 560.0 | 134,874 | 2,044,435 | 0 | 2,179,309 | 0.00274 | 0.98472 |
| 570.0 | 30,292 | 2,161,733 | 0 | 2,192,026 | 0.00275 | 0.98747 |
| 580.0 | 24,852 | 2,028,851 | 0 | 2,053,702 | 0.00258 | 0.99005 |
| 590.0 | 20,795 | 1,516,952 | 0 | 1,537,748 | 0.00193 | 0.99198 |
| 600.0 | 63,271 | 935,313 | 0 | 998,584 | 0.00125 | 0.99324 |
| 610.0 | 188,613 | 1,156,080 | 0 | 1,344,693 | 0.00169 | 0.99492 |
| 620.0 | 57,572 | 618,213 | 0 | 675,784 | 0.00085 | 0.99577 |
| 630.0 | 43,079 | 1,054,854 | 0 | 1,097,933 | 0.00138 | 0.99715 |
| 640.0 | 18,035 | 533,889 | 0 | 551,924 | 0.00069 | 0.99784 |
| 650.0 | 76,275 | 457,407 | 0 | 533,682 | 0.00067 | 0.99851 |
| 660.0 | 4,976 | 344,319 | 0 | 349,295 | 0.00044 | 0.99895 |
| 670.0 | 10,164 | 218,258 | 0 | 228,421 | 0.00029 | 0.99924 |
| 680.0 | 11,777 | 75,235 | 0 | 87,012 | 0.00011 | 0.99935 |
| 690.0 | 12,938 | 110,544 | 0 | 123.482 | 0.00016 | 0.99950 |
| 700.0 | 5,329 | 27,829 | 0 | 33,157 | 0.00004 | 0.99955 |
| 710.0 | 0 | 69,038 | 0 | 69,038 | 0.00009 | 0.99963 |
| 720.0 | 5,329 | 19,346 | 0 | 24,675 | 0.00003 | 0.99966 |
| 730.0 | 0 | 25,799 | 0 | 25,799 | 0.00003 | 0.99970 |
| 740.0 | 0 | 64,310 | 0 | 64,310 | 0.00008 | 0.99978 |
| 750.0 | 0 | 9.629 | 0 | 9,629 | 0.00001 | 0.99979 |
| 760.0 | 0 | 3,908 | 0 | 3,908 | 0.00000 | 0.99979 |
| 770.0 | 0 | 1,954 | 0 | 1,954 | 0.00000 | 0.99980 |
| 780.0 | 0 | 6,518 | 0 | 6,518 | 0.00001 | 0.99980 |
| 790.0 | 0 | 4,512 | 0 | 4,512 | 0.00001 | 0.99981 |
| 800.0 | 0 | 9,415 | 0 | 9,415 | 0.00001 | 0.99982 |
| 810.0 | 0 | 8,608 | 0 | 8,608 | 0.00001 | 0.99983 |
| 830.0 | 0 | 6,526 | 0 | 6,526 | 0.00001 | 0.99984 |
| 860.0 | 0 | 1,954 | 0 | 1,954 | 0.00000 | 0.99984 |
| 870.0 | 0 | 1,954 | 0 | 1,954 | 0.00000 | 0.99985 |
| 880.0 | 0 | 1,954 | 0 | 1,954 | 0.00000 | 0.99985 |
| 930.0 | 0 | 4,979 | 0 | 4,979 | 0.00001 | 0.99985 |
| TOTAL | 269,183,956 | 526,607,536 | 629,261 | 796,420,753 | | |

Table D-15.--Pacific halibut. Section a, CPUE estimates by stratum.

| STRATUM | AREA | SO. HI. | SAMPLES | total HAULS | HAULS WITH CATCH | HAULS HITH NUMS. | HAULS WITH L-F | MEAN CPUE KG/HA | VARIANCE MEAN CPUE KG/HA | MEAN CPUE NO/HA | VARIANCE MEAN CPUE NO/HA |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 10 | | 22,704. | 2,627,943 | 58 | 47 | 47 | 47 | 3.98 | . $353044 \mathrm{E}+00$ | 1.51 | .597456E-01 |
| 20 | | 11,962. | 1,384,553 | 31 | 24 | 24 | 24 | 2.66 | . $469182 \mathrm{E}+00$ | 1.42 | $.119023 \mathrm{E}+00$ |
| 30 | | 27,559. | 3,189,999 | 66 | 35 | 35 | 35 | 2.31 | .278572E+00 | 0.57 | .134120E-01 |
| 31 | | 2,558. | 296,105 | 9 | 3 | 3 | 3 | 3.34 | . $739478 \mathrm{E}+01$ | 0.23 | .166108E-01 |
| SUBTOTAL | | 30,118. | 3,486,104 | 75 | 38 | 38 | 38 | 2.40 | . $286609 \mathrm{E}+00$ | 0.54 | . $113502 \mathrm{E}-01$ |
| 40 | | 18,281. | 2,116,073 | 44 | 8 | 8 | 8 | 0.30 | . 240927E-01 | 0.07 | .661681E-03 |
| 41 | | 7.001. | 810,309 | 31 | 18 | 18 | 18 | 4.47 | . $181601 \mathrm{E}+01$ | 1.72 | .444572E+00 |
| 42 | | 6,154. | 712,328 | 21 | 5 | 5 | 5 | 1.19 | .617041E+00 | 0.11 | .200093E-02 |
| SUBTOTAL | | 31,436. | 3,638,710 | 96 | 31 | 31 | 31 | 1.40 | $.121854 \mathrm{E}+00$ | 0.45 | . $223474 \mathrm{E}-01$ |
| 50 | | 11,310. | 1,309,140 | 27 | 22 | 22 | 22 | 7.30 | . 293612E+01 | 1.16 | .840271E-01 |
| 60 | | 25,704. | 2,975,204 | 60 | 29 | 29 | 28 | 3.10 | .472760E+00 | 0.47 | . 100577E-01 |
| 61 | | 1,874. | 216,948 | 7 | 4 | 4 | 4 | 1.07 | . $429233 \mathrm{E}+00$ | 0.21 | .648188E-02 |
| SUBTOTAL | | 27,578. | 3,192,153 | 67 | 33 | 33 | 32 | 2.97 | . $412666 \mathrm{E}+00$ | 0.45 | .876701E-02 |
| 71 | | 21,233. | 2,457,710 | 25 | 8 | 8 | 8 | 0.37 | .214411E-01 | 0.19 | .566718E-02 |
| 72 | | 12,215. | 1,413,893 | 15 | 0 | 0 | 0 | 0.00 | 0. | 0.00 | 0. |
| 73 | | 5,494. | 635,915 | 7 | 1 | 1 | 1 | 0.14 | .196864E-01 | 0.06 | . $386971 \mathrm{E}-02$ |
| 74 | | 6,202. | 717,847 | 13 | 1 | 1 | 1 | 0.02 | . $342381 \mathrm{E}-03$ | 0.02 | . $343823 \mathrm{E}-03$ |
| SUBTOTAL | | 23,911. | 2,767,656 | 35 | 2 | 2 | 2 | 0.04 | . $106233 \mathrm{E}-02$ | 0.02 | . $227423 \mathrm{E}-03$ |
| 81 | | 2,270. | 262,712 | 47 | 18 | 18 | 18 | 1.18 | . $107513 \mathrm{E}+00$ | 0.10 | .542528E-03 |
| 82 | | 1,646. | 190,552 | 28 | 5 | 5 | 5 | 0.63 | . $989953 \mathrm{E}-01$ | 0.07 | . $179403 \mathrm{E}-02$ |
| 83 | | 1.281. | 148,224 | 31 | 2 | 2 | 2 | 0.11 | .598930E-02 | 0.01 | . $666429 \mathrm{E}-04$ |
| 84 | | 965. | 111,735 | 27. | 1 | 1 | 1 | 0.05 | .278359E-02 | 0.00 | . $155465 \mathrm{E}-04$ |
| 100 | | 45,144. | 5,225,365 | 60 | 10 | 10 | 10 | 0.19 | .504126E-02 | 0.10 | .131750E-02 |
| 200 | | 135,107. | 15,638,602 | 354 | 195 | 195 | 194 | 2.98 | . 722551 E -01 | 0.79 | . 534801E-02 |
| 300 | | 180,250. | 20,863,967 | 414 | 205 | 205 | 204 | 2.28 | . $409111 \mathrm{E}-01$ | 0.62 | .308729E-02 |
| 400 | | 6.162. | 713,222 | 133 | 26 | 26 | 26 | 0.63 | .219805E-01 | 0.06 | .204926E-03 |
| total | | 186,412. | 21,577,189 | 547 | 231 | 231 | 230 | 2.23 | . $382752 \mathrm{E}-01$ | 0.60 | .288679E-02 |

Table D. 15.--Pacific halibut (Cont.). Section b, bi onass estimates by stratum

| STRATUM | BIOMASS MT | VARIANCE BIOMASS | EFF. DEG. FREEDOM | $95 \% \text { CONF }$ | IDENCE LIMITS LOWER | - BIOMASS UPPER |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 10 | 30,973 | . $214083335 \mathrm{E}+08$ | 57.00 | | 21,705 | 40,242 |
| 20 | 10,915 | .789737016E+07 | 30.00 | | 5,177 | 16,654 |
| 30 | 21,830 | .248909095E+08 | 65.00 | | 11,860 | 31,800 |
| 31 | 2,931 | . $569295135 \mathrm{E}+07$ | 8.00 | | 0 | 8,433 |
| SUBTOTAL | 24,761 | . $305838609 \mathrm{E}+08$ | 68.86 | | 13,718 | 35,805 |
| 40 | 1,902 | . $947256740 \mathrm{E}+06$ | 43.00 | | 0 | 3,866 |
| 41 | 10,730 | . $104699100 \mathrm{E}+08$ | 30.00 | | 4,123 | 17,337 |
| 42 | 2,505 | $.274913210 \mathrm{E}+07$ | 20.00 | | 0 | 5,964 |
| SUBTOTAL | 15,137 | . $141662989 \mathrm{E}+08$ | 49.52 | | 7,570 | 22,704 |
| 50 | 28,306 | .441843579E+08 | 26.00 | | 14,639 | 41,972 |
| 60 | 27,371 | . $367447993 E+08$ | 59.00 | | 15,241 | 39,500 |
| 61 | 690 | $.177389469 \mathrm{E}+06$ | 6.00 | | 0 | 1,721 |
| SUBTOTAL | 28,061 | . $369221887 E+08$ | 59.56 | | 15,908 | 40,213 |
| 71 | 2,712 | .113718120E+07 | 24.00 | | 511 | 4,913 |
| 72 | 0 | 0. | 0.00 | | 0 | 0 |
| 73 | 264 | .699015893E+05 | 6.00 | | 0 | 911 |
| 74 | 39 | . $154915504 \mathrm{E}+04$ | 12.00 | | 0 | 125 |
| SUBTOTAL | 304 | . $714507443 \mathrm{E}+05$ | 6.27 | | 0 | 958 |
| 81 | 915 | . $651544203 \mathrm{E}+05$ | 46.00 | | 401 | 1,430 |
| 82 | 357 | . $315619025 E+05$ | 27.00 | | 0 | 722 |
| 83 | 48 | -115540278E+04 | 30.00 | | 0 | 117 |
| 84 | 17 | $.305143702 \mathrm{E}+03$ | 26.00 | | 0 | 53 |
| 100 | 3,016 | . $120863195 E+07$ | 26.71 | | 760 | 5,272 |
| 200 | 138,153 | . $155162410 \mathrm{E}+09$ | 191.48 | | 113,490 | 162,816 |
| 300 | 141,169 | . $156371042 E+09$ | 194.39 | | 116,410 | 165,928 |
| 400 | 1,338 | .981768693E+05 | 74.59 | | 713 | 1.963 |
| total | 142.507 | . $156469219 E+09$ | 194.64 | | 117,740 | 167,274 |
| CONFIDENCE LIMITS | | | | | | |
| | total biomass mt LOWER | | TOTAL | PUlAtion WER | UPPER | |
| 80.000 PERCENT | 126,383 | | 34,09 | 021 | 42,951,078 | |
| 90.000 PERCENT | 121.768 | | 32,82 | | 44,218,647 | |
| 95.000 PERCENT | 117.740 | | 31,72 | 350 | 45,324,749 | |

Table D. 15. --Pacific halibut (Cont.). Section c, population number estimates by stratum

| STRATUM | MEAN | WT KG | POPULATION | VARIANCE POPULATION | METHOD USED | EFF. DEG. FREEDOM | 95\% CONFIDENCE LIMITS LOWER | - POPULATION UPPER |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 10 | | 2.632 | 11,768,277 | . $362292454 \mathrm{E}+13$ | 1 | 57.00 | 7,955,485 | 15,581,069 |
| 20 | | 1.868 | 5,844,231 | . $200342714 \mathrm{E}+13$ | 1 | 30.00 | 2,953,934 | 8,734,528 |
| 30 | | 4.035 | 5,410,467 | . $119838673 E+13$ | 1 | 65.00 | 3,222,874 | 7,598,059 |
| 31 | | 14.824 | 197,749 | . $127880068 \mathrm{E}+11$ | 1 | 8.00 | 0 | 458,521 |
| SUBTOTAL | | 4.415 | 5,608,216 | . $121117474 \mathrm{E}+13$ | | 66.33 | 3,409,350 | 7,807,083 |
| 40 | | 4.114 | 462,268 | . $260154588 \mathrm{E}+11$ | 1 | 43.00 | 136,803 | 787,733 |
| 41 | | 2.595 | 4,134,243 | . $256309917 \mathrm{E}+13$ | 1 | 30.00 | 865,066 | 7,403,420 |
| 42 | | 10.952 | 228,726 | . $891485528 \mathrm{E}+10$ | 1 | 20.00 | 31,769 | 425,683 |
| SUBTOTAL | | 3.137 | 4,825,237 | . $259802948 \mathrm{E}+13$ | | 30.82 | 1,537,244 | 8,113,230 |
| 50 | | 6.279 | 4,507,879 | $.126448459 \mathrm{E}+13$ | 1 | 26.00 | 2,195,922 | 6,819,837 |
| 60 | | 6.593 | 4,151,730 | . $781726898 \mathrm{E}+12$ | 1 | 59.00 | 2,382,495 | 5,920,965 |
| 61 | | 5.197 | 132,773 | . $267877156 \mathrm{E}+10$ | 1 | 6.00 | 6,124 | 259,422 |
| SUBTOTAL | | 6.549 | 4,284,503 | . $784405670 \mathrm{E}+12$ | | 59.40 | 2,512,240 | 6,056,767 |
| 71 | | 1.936 | 1,400,763 | . $300573280 E+12$ | 1 | 24.00 | 269.184 | 2,532,342 |
| 72 | | 0.000 | 0 | 0. | 1 | 0.00 | 0 | 0 |
| 73 | | 2.256 | 117,219 | . $137403854 \mathrm{E}+19$ | 1 | 6.00 | 0 | 404,055 |
| 74 | | 0.998 | 39,442 | . $155568244 \mathrm{E}+10$ | 1 | 12.00 | 0 | 125,387 |
| SUBTOTAL | - | 1.939 | 156,662 | .152960679E+11 | | 7.39 | 0 | 449,158 |
| 81 | | 11.529 | 79,408 | . $328778510 \mathrm{E}+09$ | 1 | 46.00 | 42,877 | 115,939 |
| 82 | | 8.578 | 41,629 | . $571973861 E+09$ | 1 | 27.00 | 0 | 90,704 |
| 83 | | 9.705 | 4,939 | $.128561533 \mathrm{E}+08$ | 1 | 30.00 | 0 | 12,261 |
| 84 | | 13.381 | 1,305 | .170424412E+07 | 1 | 26.00 | 0 | 3,990 |
| 100 | | 1.936 | 1,557,425 | . $315869348 \mathrm{E}+12$ | 1 | 26.28 | 401,906 | 2,712,943 |
| 200 | | 3.750 | 36,838,344 | . $114844462 E+14$ | 1 | 194.81 | 30,128,535 | 43,548,152 |
| 300 | | 3.677 | 38,395,768 | . $118003155 \mathrm{E}+14$ | 1 | 204.53 | 31,594,333 | 45,197,203 |
| 400 | | 10.512 | 127,281 | . $915312769 E+09$ | 1 | 57.89 | 66,709 | 187,853 |
| total | | 3.699 | 38,523,049 | . $118012308 E+14$ | | 204.56 | 31,721,350 | 45,324,749 |

Table D. 15. -- Pacific halibut (Cont.). Section d, population number estinates by sex and centineter Length interval for the overal I survey area.

| LENGTH(MM) | MALES | FEMALES | UNSEXED | TOTAL | PROPORTION | CUNULATIVE PROPORTION |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 70.0 | 0 | 0 | 19,362 | 19,362 | 0.00050 | 0.00050 |
| 120.0 | 0 | 0 | 48,284 | 48,284 | 0.00125 | 0.00175 |
| 130.0 | 0 | 0 | 43,990 | 43,990 | 0.00114 | 0.00288 |
| 140.0 | 0 | 0 | 80,274 | 80,274 | 0.00207 | 0.00495 |
| 150.0 | 0 | 0 | 134,907 | 134,907 | 0.00348 | 0.00843 |
| 160.0 | 0 | 0 | 220,690 | 220,690 | 0.00569 | 0.01413 |
| 170.0 | 0 | 0 | 97,826 | 97,826 | 0.00252 | 0.01665 |
| 180.0 | 0 | 0 | 297,022 | 297,022 | 0.00766 | 0.02432 |
| 190.0 | 0 | 0 | 209,442 | 209,442 | 0.00540 | 0.02972 |
| 200.0 | 0 | 0 | 497,864 | 497,864 | 0.01285 | 0.04257 |
| 210.0 | 0 | 0 | 380,738 | 380,738 | 0.00982 | 0.05239 |
| 220.0 | 0 | 0 | 370,643 | 370,643 | 0.00956 | 0.06196 |
| 230.0 | 0 | 0 | 465,082 | 465,082 | 0.01200 | 0.07396 |
| 240.0 | 0 | 0 | 212,153 | 212,153 | 0.00547 | 0.07944 |
| 250.0 | 0 | 0 | 536,760 | 536,760 | 0.01385 | 0.09329 |
| 260.0 | 0 | 0 | 506,561 | 506,561 | 0.01307 | 0.10636 |
| 270.0 | 0 | 0 | 203,774 | 203,774 | 0.00526 | 0.11162 |
| 280.0 | 0 | 0 | 45,956 | 45,956 | 0.00119 | 0.11280 |
| 300.0 | 0 | 0 | 220,254 | 220,254 | 0.00568 | 0.11849 |
| 310.0 | 0 | 0 | 221,239 | 221,239 | 0.00571 | 0.12420 |
| 320.0 | 0 | 0 | 327,240 | 327,240 | 0.00844 | 0.13264 |
| 330.0 | 0 | 0 | 438,211 | 438,211 | 0.01131 | 0.14395 |
| 340.0 | 0 | 0 | 379,969 | 379,969 | 0.00981 | 0.15375 |
| 350.0 | 0 | 0 | 278,563 | 278,563 | 0.00719 | 0.16094 |
| 360.0 | 0 | 0 | 246,941 | 246,941 | 0.00637 | 0.16731 |
| 370.0 | 0 | 0 | 75,931 | 75,931 | 0.00196 | 0.16927 |
| 380.0 | 0 | 0 | 256,975 | 256,975 | 0.00663 | 0.17590 |
| 390.0 | 0 | 0 | 283,589 | 283,589 | 0.00732 | 0.18322 |
| 400.0 | 0 | 0 | 277,972 | 277,972 | 0.00717 | 0.19040 |
| 410.0 | 0 | 0 | 507,701 | 507,701 | 0.01310 | 0.20350 |
| 420.0 | 0 | 0 | 583,952 | 583,952 | 0.01507 | 0.21857 |
| 430.0 | 0 | 0 | 842,245 | 842,245 | 0.02173 | 0.24030 |
| 440.0 | 0 | 0 | 760,014 | 760,014 | 0.01961 | 0.25991 |
| 450.0 | 0 | 0 | 1,071,233 | 1,071,233 | 0.02764 | 0.28756 |
| 460.0 | 0 | 0 | 1,653,440 | 1,653,440 | 0.04267 | 0.33022 |
| 470.0 | 0 | 0 | 1,279,130 | 1,279,130 | 0.03301 | 0.36323 |
| 480.0 | 0 | 0 | 517,425 | 517,425 | 0.01335 | 0.37658 |
| 490.0 | 0 | 0 | 938,015 | 938,015 | 0.02421 | 0.40079 |
| 500.0 | 0 | 0 | 714.724 | 714,724 | 0.01844 | 0.41923 |
| 510.0 | 0 | 0 | 609,955 | 609,955 | 0.01574 | 0.43497 |
| 520.0 | 0 | 0 | 157,676 | 157,676 | 0.00407 | 0.43904 |
| 530.0 | 0 | 0 | 715,826 | 715,826 | 0.01847 | 0.45751 |
| 540.0 | 0 | 0 | 670,615 | 670,615 | 0.01731 | 0.47482 |
| 550.0 | 0 | 0 | 267,951 | 267,951 | 0.00691 | 0.48173 |
| 560.0 | 0 | 0 | 361,227 | 361,227 | 0.00932 | 0.49105 |
| 570.0 | 0 | 0 | 522,090 | 522,090 | 0.01347 | 0.50453 |
| 580.0 | 0 | 0 | 339,548 | 339,548 | 0.00876 | 0.51329 |

Table D. 15.--Pacific halibut (Cont.). Section d, population number estinates by sex and centineter length interval for the overall survey area.

| LENGTH(MM) | MALES | FEMALES | UNSEXED | TOTAL | PROPORTION | CUMULATIVE PROPORTION |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 590.0 | 0 | 0 | | 457,624 | 0.01181 | 0.52510 |
| 600.0 | 0 | 0 | 607,030 | 607,030 | 0.01566 | 0.54076 |
| 610.0 | 0 | 0 | 366,153 | 366,153 | 0.00945 | 0.55021 |
| 620.0 | 0 | 0 | 357.629 | 357,629 | 0.00923 | 0.55944 |
| 630.0 | 0 | 0 | 645,195 | 645,195 | 0.01665 | 0.57609 |
| 640.0 650.0 | 0 | 0 | 757,844 | 757,844 | 0.01956 | 0.59565 |
| 650.0 680.0 | 0 | 0 | 707,385 | 707,385 | 0.01825 | 0.59565 0.61390 |
| 680.0 670.0 | 0 0 | 0 | 385,860 541,703 | 385,860 541,703 | 0.00996 0.01398 | 0.62386 |
| 680.0 | 0 | 0 | 592,875 | 592,875 | 0.01398 0.01530 | 0.63784 0.65313 |
| 690.0 | 0 | 0 | 1,126,907 | 1,126,907 | 0.02908 | 0.68221 |
| 700.0 | 0 | 0 | 854,672 | 854,672 | 0.02205 | 0.70427 |
| 710.0 | 0 | 0 | 925,364 | 925,364 | 0.02435 | 0.72862 |
| 720.0 | 0 | 0 | 406,162 | 406,162 | 0.01095 | 0.73957 |
| 730.0 | 0 | 0 | 602,852 | 602,852 | 0.01556 | 0.75513 |
| 740.0 | 0 | 0 | 276,853 | 276,853 | 0.00753 | 0.76266 |
| 750.0 760.0 | 0 | 0 | 620,967 | 620,967 | 0.01647 | 0.77913 |
| 770.0 | 0 | 0 | 514,079 480,045 | 514,079 | 0.01365 | 0.79278 |
| 780.0 | 0 | 0 | 447,900 | 487, 900 | 0.01239 0.01203 | 0.80517 0.81720 |
| 790.0 | 0 | 0 | 409,880 | 409,880 | 0.01099 | 0.82819 |
| 800.0 | 0 | 0 | 197,981 | 212,987 | 0.00550 | 0.83369 |
| 810.0 | 0 | 0 | 559,031 | 559,031 | 0.01443 | 0.84812 |
| 820.0 | 0 | 0 | 339,136 | 339,136 | 0.00964 | 0.85776 |
| 830.0 | 0 | 0 | 418,152 | 418,152 | 0.01079 | 0.86855 |
| 840.0 850.0 | 0 0 | 0 | 109,353 | 109,353 | 0.00282 | 0.87137 |
| 8860.0 | 0 | 0 | 295,578 265,287 | 295,578 265,287 | 0.00763 0.00685 | 0.87900 0.88584 |
| 870.0 | 0 | 0 | 125,953 | 125,953 | 0.00325 | 0.88910 |
| 880.0 | 0 | 0 | 194,889 | 194,889 | 0.00503 | 0.89412 |
| 890.0 | 0 | 0 | 376,486 | 376,486 | 0.00972 | 0.90384 |
| 900.0 | 0 | 0 | 212,894 | 212,894 | 0.00582 | 0.90966 |
| 910.0 | 0 | 0 | 352,635 | 352,635 | 0.00951 | 0.91918 |
| 920.0 | 0 | 0 | 176,354 | 176,354 | 0.00455 | 0.92373 |
| 930.0 | 0 | 0 | 109.655 | 109,655 | 0.00283 | 0.92656 |
| 940.0 | 0 | 0 | 211,482 | 211,482 | 0.00546 | 0.93201 |
| 950.0 | 0 | 0 | 100,875 | 100,875 | 0.00260 | 0.93462 |
| 960.0 | 0 | 0 | 132,077 | 132,077 | 0.00341 | 0.93803 |
| 970.0 | 0 | 0 | 153.829 | 153,829 | 0.00397 | 0.94200 |
| 980.0 | 0 | 0 | 180,337 | 180,337 | 0.00513 | 0.94712 |
| 990.0 | 0 | 0 | 209,253 | 209,253 | 0.00540 | 0.95252 |
| 1000.0 | 0 | 0 | 153,946 | 153.946 | 0.00397 | 0.95649 |
| 1010.0 1020 | 0 | 0 | 39,390 157,376 | 39,390 | 0.00102 | 0.95751 |
| 1020.0 | 0 | 0 | 157,376 | 157,376 | 0.00406 | 0.96157 |
| 1030.0 | 0 | 0 | 134.897 | 134,897 | 0.00348 | 0.96505 |
| 1040.0 | 0 | 0 | 75,873 | 75,873 | 0.00196 | 0.96701 |
| 1050.0 | 0 | 0 | 115,147 | 115,147 | 0.00297 | 0.96998 |

Table D. 15. -- Pacific halibut (Cont.). Section d, population number estimates by sex and centineter length interval for the overal l survey area.

| LENGTH(MM) | MALES | FEMALES | UNSEXED | TOTAL | PROPORTION | CUMULATIVE
 PROPORTION |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1060.0 | 0 | 0 | 34,524 | 34,524 | 0.00089 | 0.97087 |
| 1070.0 | 0 | 0 | 35,280 | 35,280 | 0.00091 | 0.97178 |
| 1080.0 | 0 | 0 | -1.210 | 1,210 | 0.00003 | 0.97181 |
| 1090.0 | 0 | 0 | 21,783 | 21,783 | 0.00056 | 0.97238 |
| 1100.0 | 0 | 0 | 40,455 | 40,455 | 0.00104 | 0.973 : |
| 1110.0 | 0 | 0 | 77,437 | 77,437 | 0.00200 | 0.97 si , |
| 1120.0 | 0 | 0 | 52,991 | 52,991 | 0.00137 | 0.97679 |
| 1130.0 | 0 | 0 | 50,988 | 50,988 | 0.00132 | 0.97810 |
| 1140.0 | 0 | 0 | 61,645 | 61,645 | 0.00159 | 0.97969 |
| 1150.0 | 0 | 0 | 56,789 | 56,789 | 0.00183 | 0.98152 |
| 1180.0 | 0 | 0 | 40,546 | 40,546 | 0.00105 | 0.98257 |
| 1200.0 | 0 | 0 | 157,332 | 157,332 | 0.00406 | 0.98663 |
| 1210.0 | 0 | 0 | 1,751 | 1.751 | 0.00005 | 0.98667 |
| 1220.0 | 0 | 0 | 46,466 | 46,466 | 0.00120 | 0.98787 |
| 1230.0 | 0 | 0 | 36,896 | 36,896 | 0.00095 | 0.98882 |
| 1250.0 | 0 | 0 | 21,783 | 21,783 | 0.00056 | 0.98939 |
| 1280.0 | 0 | 0 | 1.519 | 1,519 | 0.00004 | 0.98942 |
| 1300.0 | 0 | 0 | 1,588 | 1,588 | 0.00004 | 0.98947 |
| 1330.0 | 0 | 0 | 45,227 | 45,227 | 0.00117 | 0.99063 |
| 1420.0 | 0 | 0 | 39,633 | 39,633 | 0.00102 | 0.99166 |
| 1430.0 | 0 | 0 | 48,841 | 48,841 | 0.00126 | 0.99292 |
| 1440.0 | 0 | 0 | 50,344 | 50,344 | 0.00130 | 0.99421 |
| 1450.0 | 0 | 0 | 40,278 | 40,278 | 0.00104 | 0.99525 |
| 1460.0 | 0 | 0 | 56,874 | 56.874 - | 0.00147 | 0.99672 |
| 1500.0 | 0 | 0 | 35,677 | 35,677 | 0.00092 | 0.99764 |
| 1550.0 | 0 | 0 | 51,418 | 51,418 | 0.00133 | 0.99897 |
| 1560.0 | 0 | 0 | 38,423 | 38,423 | 0.00099 | 0.99996 |
| 1630.0 | 0 | 0 | 1,519 | 1,519 | 0.00004 | 1.00000 |
| TOTAL | 0 | 0 | 38,523,049 | 38,523,049 | | |

Table D. 16. -- Longhead dab. Section a, CPUE estimates by stratum

| STRATUM | AREA SO. MI. | SAMPLES | total HAULS | HAULS HITH CATCH | haUls HITH NUMS. | hauls
 HITH
 L-F | MEAN CPUE KG/HA | VARIANCE MEAN CPUE KG/HA | MEAN CPUE NO/HA | VARIANCE mean cpue NO/HA |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 10 | 22,704. | 2,627,943 | 58 | 38 | 38 | 1 | 2.15 | . $197353 \mathrm{E}+00$ | 19.47 | . 208313E+02 |
| , 20 | 11,962. | 1,384,553 | 31 | 25 | 25 | 0 | 1.23 | .208098E+00 | 22.03 | . $799004 \mathrm{E}+02$ |
| 30 | 27,559. | 3,189,999 | 66 | 6 | 6 | 0 | 0.18 | .138672E-01 | 0.57 | . $131933 \mathrm{E}+00$ |
| 31 | 2,558. | 296,105 | 9 | 0 | 0 | 0 | 0.00 | 0. | 0.00 | 0. |
| SUBTOTAL | 30,118. | 3,486,104 | 75 | 6 | 6 | 0 | 0.16 | .116115E-01 | 0.53 | . $110473 \mathrm{E}+00$ |
| 40 | 18,281. | 2,116,073 | 44 | 1 | 1 | 0 | 0.00 | .694630E-07 | 0.01 | . $337617 \mathrm{E}-04$ |
| 41 | 7,001. | 810,309 | 31 | 0 | 0 | 0 | 0.00 | 0. | 0.00 | 0. |
| 42 | 6,154. | 712,328 | 21 | 0 | 0 | 0 | 0.00 | 0. | 0.00 | $0 .$ |
| SUBTOTAL | 31,436. | 3,638,710 | 96 | 1 | 1 | 0 | 0.00 | .234920E-07 | 0.00 | .114180E-04 |
| 50 | 11,310. | 1,309,140 | 27 | 0 | 0 | 0 | 0.00 | 0. | 0.00 | 0. |
| 60 | 25,704. | 2,975,204 | 60 | 0 | 0 | 0 | 0.00 | 0. | 0.00 | 0. |
| 61 | 1,874. | 216,948 | 7 | 0 | 0 | 0 | 0.00 | 0. | 0.00 | 0. |
| SUBTOTAL | 27,578. | 3,192,153 | 67 | 0 | 0 | 0 | 0.00 | 0. | 0.00 | 0. |
| 71 | 21,233. | 2,457,710 | 25 | 10 | 10 | 7 | 0.14 | .404275E-02 | 2.80 | .203221E+01 |
| - 72 | 12,215. | 1,413,893 | 15 | 0 | 0 | 0 | 0.00 | 0. | 0.00 | 0. |
| 73 | 5,494. | 635,915 | 7 | 0 | 0 | 0 | 0.00 | 0. | 0.00 | 0. |
| - 74 | 6,202. | 717,847 | - 13 | 0 | 0 | 0 | 0.00 | 0. | 0.00 | 0. |
| SUBTOTAL | 23,911. | 2,767,656 | 35 | 0 | 0 | 0 | 0.00 | 0. | 0.00 | 0. |
| 81 | 2,270. | 262,712 | 47 | 0 | 0 | 0 | 0.00 | 0. | 0.00 | 0. |
| 82 | 1,646. | 190,552 | 28 | 0 | 0 | 0 | 0.00 | 0. | 0.00 | 0. |
| 83 | 1,281. | 148,224 | 31 | 0 | 0 | 0 | 0.00 | 0. | 0.00 | 0. |
| 84 | 965. | 111,735 | 27 | 0 | 0 | 0 | 0.00 | 0. | 0.00 | 0. |
| 100 | 45,144. | 5,225,365 | 60 | 10 | 10 | 7 | 0.07 | .894345E-03 | 1.32 | . $449568 \mathrm{E}+00$ |
| 200 | 135,107. | 15,638,602 | 354 | 70 | 70 | 1 | 0.51 | .778103E-02 | 5.34 | . 122001E+01 |
| 300 | 180,250. | 20,863,967 | 414 | 80 | 80 | 8 | 0.40 | .442769E-02 | 4.33 | $.713634 \mathrm{E}+00$ |
| 400 | 6,162. | 713.222 | 133 | 0 | 0 | 0 | 0.00 | 0. | 0.00 | 0. |
| TOTAL | 186,412. | 21,577,189 | 547 | 80 | 80 | 8 | 0.38 | .413981E-02 | 4.19 | $.667237 \mathrm{E}+00$ |

Table D. 16.-- Longhead dab (Cont.). Section b, bi onass estimates by stratum

Table D. 16. --Longhead dab (Cont.). Section c, population nunber estimates by stratum

| STRATUM | MEAN | WT KG | POPULATION | variance POPULATION | METHOD USED | EFF. DEG. FREEDOM | | CONFIDENCE LIMITS LOWER | - POPULATION UPPER |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 10 | | 0.111 | 151,642,869 | . $126319525 E+16$ | 1 | 57.00 | | 80,447,997 | 222,837,741 |
| 20 | | 0.056 | 90,364,694 | . $134489988 \mathrm{E}+16$ | 1 | 30.00 | | 15,478,680 | 165,250,708 |
| 30 | | 0.305 | 5,423,911 | .117884708E+14 | 1 | 65.00 | | 0 | 12,285,057 |
| 31 | | 0.000 | 0 | 0. | 1 | 0.00 | | 0 | 12,285,057 |
| SUBTOTAL | | 0.305 | 5,423,911 | . $117884708 \mathrm{E}+14$ | | 65.00 | | 0 | 12,285,057 |
| 40 | | 0.045 | 36,434 | . $132741862 \mathrm{E}+10$ | 1 | 43.00 | | 0 | 109,952 |
| 41 | | 0.000 | 0 | 0. | 1 | 0.00 | | 0 | 10 |
| 42 | | 0.000 | 0 | 0. | 1 | 0.00 | | 0 | 0 |
| SUBTOTAL | | 0.045 | 36,434 | . $132741862 \mathrm{E}+10$ | | 43.00 | | 0 | 109,952 |
| 50 | | 0.000 | 0 | 0. | 1 | 0.00 | | 0 | 0 |
| 60 | | 0.000 | 0 | 0. | 1 | 0.00 | | 0 | 0 |
| 61 | | 0.000 | 0 | 0. | 1 | 0.00 | | 0 | 0 |
| SUBTOTAL | | 0.000 | 0 | 0. | | 0.00 | | 0 | 0 |
| 71 | | 0.050 | 20,412,411 | $.107783118 \mathrm{E}+15$ | 1 | 24.00 | | 0 | 41,840,580 |
| 72 | | 0.000 | 0 | 0. | 1 | 0.00 | | 0 | 0 |
| 73 | | 0.000 | 0 | 0. | 1 | 0.00 | | 0 | 0 |
| 74 | | 0.000 | 0 | 0. | 1 | 0.00 | | 0 | 0 |
| SUBTOTAL | | 0.000 | 0 | 0. | | 0.00 | | 0 | 0 |
| 81 | | 0.000 | 0 | 0. | 1 | 0.00 | | 0 | 0 |
| 82 | | 0.000 | 0 | 0. | 1 | 0.00 | | 0 | 0 |
| 83 | | 0.000 | 0 | 0. | 1 | 0.00 | | 0 | 0 |
| 84 | | 0.000 | 0 | 0. | 1 | 0.00 | | 0 | 0 |
| 100 | | 0.050 | 20,412,411 | . $107783118 \mathrm{E}+15$ | 1 | 24.00 | | 0 | 41,840,580 |
| 200 | | 0.095 | 247,467,907 | $.261988493 \mathrm{E}+16$ | 1 | 77.74 | | 145,405,393 | 349,530,421 |
| 300 | | 0.091 | 267,880,318 | $.272766805 \mathrm{E}+16$ | 1 | 83.81 | | 163,843,971 | 371.916,664 |
| 400 | | 0.000 | 0 | 0. | 1 | 0.00 | | 0 | 0 |
| TOTAL | | 0.091 | 267,880,318 | . $272766805 \mathrm{E}+16$ | | 83.81 | | 163,843,971 | 371,916,664 |

Table D. 16.-- Longhead dab (Cont.). Section d, population number estinates by sex and centineter length interval for the overal I survey area.

| LENGTH(MM) | MALES | FEMALES | UNSEXED | TOTAL | PROPORTION | CUMULATIVE
 PROPORTION |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 110.0 | 213.127 | 0 | 0 | 213,127 | 0.00080 | 0.00080 |
| 120.0 | 653,828 | 0 | 0 | 653,828 | 0.00244 | 0.00324 |
| 130.0 | 1,526,104 | 389.428 | 0 | 1,915,531 | 0.00715 | 0.01039 |
| 140.0 | 2,050,152 | 142,085 | 0 | 2,192,236 | 0.00818 | 0.01857 |
| 150.0 | 2,944,892 | 514,012 | 0 | 3,458,903 | 0.01291 | 0.03148 |
| 160.0 | 1,641,866 | 1,045,524 | 0 | 2,687,389 | 0.01003 | 0.04151 |
| 170.0 | 9,674,896 | 1,204,324 | 0 | 10,879,221 | 0.04061 | 0.08213 |
| 180.0 | 645,470 | 2,003,631 | 0 | 2,649,100 | 0.00989 | 0.09202 |
| 190.0 | 16,920, 250 | 1,947,162 | 0 | 18,867,411 | 0.07043 | 0.16245 |
| 200.0 | 16,920,250 | 656,096 | 0 | 17,576,346 | 0.06561 | 0.22806 |
| 210.0 | 8,617,433 | 522,370 | 0 | 9,139,802 | 0.03412 | 0.26218 |
| 220.0 | 16,849,208 | 292,527 | 0 | 17,141,735 | 0.06399 | 0.32617 |
| 230.0 | 8,424,604 | 8,566,688 | 0 | 16,991,292 | 0.06343 | 0.38960 |
| 240.0 | 8,424,604 | 8,646,089 | 0 | 17,070,692 | 0.06373 | 0.45332 |
| 250.0 | 0 | 71,042 | 0 | 71,042 | 0.00027 | 0.45359 |
| 260.0 | 0 | 8,424,604 | 0 | 8,424,604 | 0.03145 | 0.48504 |
| 270.0 | 0 | 8,424,604 | 0 | 8,424,604 | 0.03145 | 0.51649 |
| 280.0 | - 0 | 8,424,604 | 0 | 8,424,604 | 0.03145 | 0.54794 |
| 290.0 | 8,424,604 | - 0 | 0 | 8,424,604 | 0.03145 | 0.57939 |
| 300.0 | - 0 | 8,424.604 | 0 | 8,424,604 | 0.03145 | 0.61084 |
| 310.0 | 0 | 8,424,604 | 0 | 8,424,604 | 0.03145 | 0.64228 |
| TOTAL | 103,931,285 | 68,123,995 | 0 | 172,055,279 | | |

Table D. 17.-- Starry flounder. Section a, CPUE estinates by stratum

| STRATUM | AREA SQ. MI. | SAMPLES | TOTAL HAULS | HAULS WITH CATCH | HAULS WITH HUMS. | HAULS
 WITH
 L-F | MEAN CPUE KG/HA | VARIANCE MEAN CPUE KG/HA | MEAN CPUE NO/HA | VARIANCE MEAN CPUE NO/HA |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 10 | 22,704. | 2,627,943 | 58 | 23 | 23 | 0 | 0.71 | .280815E-01 | 0.57 | . 167572E-01 |
| 20 | 11,962. | 1,384,553 | 31 | 5 | 5 | 0 | 0.17 | .792627E-02 | 0.17 | .627209E-02 |
| 30 | 27,559. | 3,189,999 | 66 | 4 | 4 | 0 | 0.33 | .647242E-01 | 0.18 | .154358E-01 |
| 31 | 2,558. | 296,105 | 9 | 0 | 0 | 0 | 0.00 | 0. | 0.00 | 0. |
| SUBTOTAL | 30,118. | 3,486,104 | 75 | 4 | 4 | 0 | 0.30 | . $541960 \mathrm{E}-01$ | 0.17 | .129250E-01 |
| 40 | 18,281. | 2,116,073 | 44 | 0 | 0 | 0 | 0.00 | 0. | 0.00 | 0. |
| 41 | 7,001. | 810,309 | 31 | 0 | 0 | 0 | 0.00 | 0. | 0.00 | 0. |
| 42 | 6,154. | 712,328 | 21 | 0 | 0 | 0 | 0.00 | 0. | 0.00 | 0. |
| SUBTOTAL | 31,436. | 3,638,710 | 96 | 0 | 0 | 0 | 0.00 | 0. | 0.00 | 0. |
| 50 | 11,310. | 1,309,140 | 27 | 1 | 1 | 0 | 0.02 | . $585582 \mathrm{E}-03$ | 0.02 | .232339E-03 |
| 60 | 25,704. | 2,975,204 | 60 | 0 | 0 | 0 | 0.00 | 0. | 0.00 | 0. |
| 61 | 1,874. | 216,948 | 7 | 0 | 0 | 0 | 0.00 | 0. | 0.00 | 0. |
| SUBTOTAL | 27,578. | 3,192,153 | 67 | 0 | 0 | 0 | 0.00 | 0. | 0.00 | 0. |
| 71 | 21,233. | 2,457,710 | 25 | 8 | 8 | 5 | 0.38 | .239031E-01 | 0.42 | .265385E-01 |
| - 72 | 12,215. | 1,413,893 | 15 | 0 | 0 | 0 | 0.00 | 0. | 0.00 | 0. |
| 73 | 5,494. | 635,915 | 7 | 0 | 0 | 0 | 0.00 | 0. | 0.00 | 0. |
| 74 | 6,202. | 717,847 | 13 | 0 | 0 | 0 | 0.00 | 0. | 0.00 | 0. |
| SUBTOTAL | 23,911. | 2,767,656 | 35 | 0 | 0 | 0 | 0.00 | 0. | 0.00 | 0. |
| 81 | 2,270. | 262,712 | 47 | 0 | 0 | 0 | 0.00 | 0. | 0.00 | 0. |
| 82 | 1,646. | 190,552 | 28 | 0 | 0 | 0 | 0.00 | 0. | 0.00 | 0. |
| 83 | 1.281. | 148,224 | 31 | 0 | 0 | 0 | 0.00 | 0. | 0.00 | 0. |
| 84 | 965. | 111,735 | 27 | 0 | 0 | 0 | 0.00 | 0. | 0.00 | 0. |
| 100 | 45,144. | 5,225,365 | 60 | 8 | 8 | 5 | 0.18 | .528789E-02 | 0.20 | .587090E-02 |
| 200 | 135, 107. | 15,638,602 | 354 | 33 | 33 | 0 | 0.20 | . 355230 E -02 | 0.15 | .116625E-02 |
| 300 | 180,250. | 20,863,967 | 414 | 41 | 41 | 5 | 0.20 | .232746E-02 | 0.16 | . 102348E-02 |
| 400 | 6,162. | 713,222 | 133 | 0 | 0 | 0 | 0.00 | 0. | 0.00 | 0. |
| total | 186,412. | 21,577,189 | 547 | 41 | 41 | 5 | 0.19 | .217613E-02 | 0.16 | .956937E-03 |

Table D.17.--Starry flounder (Cont.). Section b, bi onass estimates by stratum

Table D. 17: Starry flounder (Cont.). Section c, population nunber estimates by stratum

Table D.17.-- Starry flounder (Cont.). Section d, population number estimates by sex and centineter length interval for the overall survey area.

| LENGTH(MM) | MALES | FEMALES | UNSEXED | TOTAL | PROPORTION | CUMULATJVE PROPORTION |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 290.0 | 150,768 | 0 | 0 | 150,768 | 0.01520 | 0.01520 |
| 330.0 | 134,898 | 0 | 0 | 134,898 | 0.01360 | 0.02881 |
| 340.0 | 295,029 | 0 | 0 | 295,029 | 0.02975 | 0.05856 |
| 350.0 | 301,537 | 348,716 | 0 | 650,252 | 0.06558 | 0.12414 |
| 380.0 | 147,514 | 150,768 | 0 | 298,283 | 0.03008 | 0.15422 |
| 390.0 | 298,283 | - 0 | 0 | 298,283 | 0.03008 | 0.18430 |
| 410.0 | 0 | 443,929 | 0 | 443,929 | 0.04477 | 0.22907 |
| 420.0 | 0 | 348,716 | 0 | 348,716 | 0.03517 | 0.26424 |
| 440.0 | 0 | 293,161 | 0 | 293,161 | 0.02957 | 0.29381 |
| 560.0 | 0 | 142,392 | 0 | 142,392 | 0.01436 | 0.30817 |
| TOTAL | 1,328,028 | 1,727,682 | 0 | 3,055,710 | | |

Table D-18.--Rex sole. Section a, CPUE estimates by stratum.

| STRATUM | AREA | SQ. MI. | SAMPLES | TOTAL HAULS | HAULS WITH CATCH | HAULS WITH NUMS. | HAULS WITH L-F | MEAN CPUE
 KG/HA | VARIANCE MEAN CPUE KG/HA | MEAN CPUE
 NO/HA | VARIANCE MEAN CPUE NO/HA |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 10 | | 22,704. | 2,627,943 | 58 | 3 | 3 | 1 | 0.02 | .382684E-03 | 0.05 | .136331E-02 |
| 20 | | 11,962. | 1,384,553 | 31 | 0 | 0 | 0 | 0.00 | 0. | 0.00 | 0.1 |
| 30 | | 27,559. | 3,189,999 | 66 | 11 | 11 | 0 | 0.25 | .151566E-01 | 0.55 | .578850E-01 |
| 31 | | 2,558. | 296,105 | 9 | 3 | 3 | 0 | 0.16 | .187017E-01 | 0.25 | . 200616E-01 |
| SUBTOTAL | | 30,118. | 3,486,104 | 75 | 14 | 14 | 0 | 0.24 | .128261E-01 | 0.53 | .486140E-01 |
| 40 | | 18,281. | 2,116,073 | 44 | 0 | 0 | 0 | 0.00 | 0. | 0.00 | 0. |
| 41 | | 7,001. | 810,309 | 31 | 1 | 1 | 0 | 0.01 | .997992E-04 | 0.04 | .142549E-02 |
| 42 | | 6,154. | 712,328 | 21 | 0 | 0 | 0 | 0.00 | 0. | 0.00 | |
| SUBTOTAL | | 31,436. | 3,638,710 | 96 | 1 | 1 | 0 | 0.00 | .494919E-05 | 0.01 | . $706923 \mathrm{E}-04$ |
| 50 | | 11,310. | 1,309,140 | 27 | 25 | 25 | 6 | 2.23 | $.122389 \mathrm{E}+00$ | 8.19 | .281044E+01 |
| . 60 | | 25,704. | 2,975,204 | 60 | 18 | 18 | 0 | 0.45 | .216979E-01 | 1.20 | . $155015 \mathrm{E}+00$ |
| 61 | | 1,874. | 216,948 | 7 | 0 | 0 | 0 | 0.00 | 0. | 0.00 | 0. |
| SUBTOTAL | | 27,578. | 3,192,153 | 67 | 18 | 18 | 0 | 0.42 | .188488E-01 | 1.12 | $.134661 E+00$ |
| 71 | | 21,233. | 2,457,710 | 25 | 0 | 0 | 0 | 0.00 | 0. | 0.00 | 0. |
| 72 | | 12,215. | 1,413,893 | 15 | 0 | 0 | 0 | 0.00 | 0. | 0.00 | 0. |
| 73 | | 5,494. | 635,915 | 7 | 0 | 0 | 0 | 0.00 | 0. | 0.00 | 0. |
| 74 | | 6,202. | 717,847 | 13 | 0 | 0 | 0 | 0.00 | 0. | 0.00 | 0. |
| SUBTOTAL | | 23,911. | 2,767,656 | 35 | 0 | 0 | 0 | 0.00 | 0. | 0.00 | 0. |
| 81 | | 2,270. | 262,712 | 47 | 42 | 42 | 4 | 1.92 | . 136472E+00 | 4.49 | . $590150 \mathrm{E}+00$ |
| - 82 | | 1,646. | 190,552 | 28 | 21 | 21 | 0 | 0.27 | . $560065 \mathrm{E}-02$ | 1.06 | .599560E-01 |
| 83 | | 1,281. | 148,224 | 31 | 8 | 8 | 0 | 0.29 | . $326754 \mathrm{E}-01$ | 0.99 | $.362681 E+00$ |
| 84 | | 965. | 111,735 | 27 | 7 | 7 | 0 | 0.04 | . 346235 E-03 | 0.23 | .117269E-01 |
| 100 | | 45,144. | 5,225,365 | 60 | 0 | 0 | 0 | 0.00 | 0. | 0.00 | 0. |
| 200 | | 135, 107. | 15,638,602 | 354 | 61 | 61 | 7 | 0.33 | .229143E-02 | 1.04 | .277635E-01 |
| 300 | | 180,250. | 20,863,967 | 414 | 61 | 61 | 7 | 0.25 | .128739E-02 | 0.78 | .155982E-01 |
| 400 | | 6,162. | 713,222 | 133 | 78 | 78 | 4 | 0.85 | .203358E-01 | 2.18 | $.100302 \mathrm{E}+00$ |
| total | | 186,412. | 21,577,189 | 547 | 139 | 139 | 11 | 0.27 | . 122590E-02 | 0.83 | .146937E-01 |

Table D. 18. -- Rex sole (Cont.). Section b, bi onass estimates by stratum

Table D.18.--Rex sole (Cont.). Section c, population number estimates by stratum

| StRATUM | MEAN | HT KG | POPULATION | VARIANCE POPULATION | METHOD USED | EFF. DEG. FREEDOM | 95\% CONFIDENCE LIMITS LOWER | - POPULATION UPPER |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 10 | | 0.428 | 392,665 | .826699008E+11 | 1 | 57.00 | 0 | 968,619 |
| 20 | | 0.000 | 0 | 0. | 1 | 0.00 | 0 | 968, 0 |
| 30 | | 0.453 | 5,227,739 | . $517212662 E+13$ | 1 | 65.00 | 683,067 | 9,772,410 |
| 31 | | 0.661 | 216,013 | $.154446431 \mathrm{E}+11$ | 1 | 8.00 | 683, 0 | -502,595 |
| SUBTOTAL | | 0.461 | 5,443,752 | . $518757126 \mathrm{E}+13$ | | 65.38 | 892,300 | 9,995,204 |
| 40 | | 0.000 | 0 | 0. | 1 | 0.00 | 0 | 0 |
| 41 | | 0.265 | 90,656 | . $821842580 \mathrm{E}+10$ | 1 | 30.00 | 0 | 275,774 |
| 42 | | 0.000 | . 0 | 0. | 1 | 0.00 | 0 | 27, 0 |
| SUBTOTAL | | 0.265 | 90.656 | . $821842580 \mathrm{E}+10$ | | 30.00 | 0 | 275,774 |
| 50 | | 0.272 | 31,757,889 | .422930398E+14 | 1 | 26.00 | 18,387,083 | 45,128,694 |
| 60 | | 0.376 | 10,583,457. | $.120484142 \mathrm{E}+14$ | 1 | 59.00 | 3,637,647 | 17,529,266 |
| 61 | | 0.000 | 0 | 0. | 1 | 0.00 | , 0 | 17,529, 0 |
| SUBTOTAL | | 0.376 | 10,583,457 | . $120484142 \mathrm{E}+14$ | | 59.00 | 3,637,647 | 17,529,266 |
| 71 | | 0.000 | 0 | 0. | 1 | 0.00 | 0 | 0 |
| - 72 | | 0.000 | 0 | 0. | 1 | 0.00 | 0 | 0 |
| 73 | | 0.000 | 0 | 0. | 1 | 0.00 | 0 | 0 |
| 74 | | 0.000 | 0 | 0. | 1 | 0.00 | 0 | 0 |
| SUBTOTAL | | 0.000 | 0 | 0. | | 0.00 | 0 | 0 |
| 81 | | 0.427 | 3,496,467 | . $357638325 E+12$ | 1 | 46.00 | 2,291,619 | 4,701,316 |
| 82 | | 0.258 | 595,835 | . $191152990 \mathrm{E}+11$ | 1 | 27.00 | 2, 312,129 | 879,540 |
| 83 | | 0.295 | 434,489 | $.699652455 \mathrm{E}+11$ | 1 | 30.00 | 12, 0 | 974,618 |
| - 84 | | 0.187 | 74,763 | $.128553045 \mathrm{E}+10$ | 1 | 26.00 | 1,046 | 148,479 |
| 100 | | 0.000 | 0 | 0. | 1 | 0.00 | 0 | 0 |
| 200 | | 0.317 | 48,268,418 | . $596199135 \mathrm{E}+14$ | 1 | 49.60 | 32,744,557 | 63,792,279 |
| 300 | | 0.317 | 48,268,418 | -596199135E+14 | 1 | 49.60 | 32,744,557 | 63,792,279 |
| 400 | | 0.389 | 4,601,554 | . $448004400 \mathrm{E}+12$ | 1 | 67.87 | 3,264,676 | 5,938,431 |
| TOTAL | | 0.324 | 52,869,972 | . $600679179 \mathrm{E}+14$ | | 50.34 | 37,287,894 | 68,452,050 |

Table D. 18. -- Rex Sole (Cont.). Section d, population number estinates by sex and centinter interval for the overall survey area.

| LENGTH(MM) | MALES | FEMALES | UNSEXED | TOTAL | PROPORTION | cumulative PROPORTION |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 170.0 | 0 | 112,019 | 0 | 112,019 | 0.00212 | 0.00212 |
| 180.0 | 56,009 | 0 | 0 | 56,009 | 0.00106 | 0.00318 |
| 190.0 | 0 | 56,009 | 0 | 56,009 | 0.00106 | 0.00424 |
| 200.0 | 71,392 | 0 | 0 | 71,392 | 0.00135 | 0.00559 |
| 210.0 | 123,630 | 130,775 | 0 | 254,406 | 0.00481 | 0.01040 |
| 220.0 | 71,392 | 147,996 | 0 | 219,388 | 0.00415 | 0.01455 |
| 230.0 | 377,268 | 147,996 | 0 | 525,264 | 0.00994 | 0.02448 |
| 240.0 | 798,823 | 156,579 | 0 | 955,403 | 0.01807 | 0.04256 |
| 250.0 | 1,021,585 | 793,862 | 0 | 1,815,447 | 0.03434 | 0.07689 |
| 260.0 | 2,561,208 | 857,016 | 0 | 3,418, 224 | 0.06465 | 0.14155 |
| 270.0 | 1,503,608 | 844,843 | 0 | 2,348,451 | 0.04442 | 0.18597 |
| 280.0 | 923,405 | 280,047 | 0 | 1,203,452 | 0.02276 | 0.20873 |
| 290.0 | 591,022 | 387,416 | 0 | 978,438 | 0.01851 | 0.22723 |
| 300.0 | 532,408 | 345,624 | 0 | 878,032 | 0.01661 | 0.24384 |
| 310.0 | 1,331,454 | 1,327,628 | 0 | 2,659,081 | 0.05029 | 0.29414 |
| 320.0 | 2,410,961 | 2,705,417 | 0 | 5,116,377 | 0.09677 | 0.39091 |
| 330.0 | 1,565,545 | 1,023,422 | 0 | 2,588,967 | 0.04897 | 0.43988 |
| 340.0 | 1,140,254 | 877,264 | 0 | 2,017,518 | 0.03816 | 0.47804 |
| 350.0 | 688,665 | 711,280 | 0 | 1,399,945 | 0.02648 | 0.50452 |
| 360.0 | 650,405 | 464,787 | 0 | 1,115,193 | 0.02109 | 0.52561 |
| 370.0 | 536,352 | 504,909 | 0 | 1,041,261 | 0.01969 | 0.54531 |
| 380.0 | 348,799 | 197,628 | 0 | 546,428 | 0.01034 | 0.55564 |
| 390.0 | 204,398 | 324,797 | 0 | 529,196 | 0.01001 | 0.56565 |
| 400.0 | 211,626 | 628,992 | 0 | 840,618 | 0.01590 | 0.58155 |
| 410.0 | 541,054 | 133,079 | 0 | 674,134 | 0.01275 | 0.59430 |
| 420.0 | 281,796 | 255,271 | 0 | 537,067 | 0.01016 | 0.60446 |
| 430.0 | 345,113 | 399,184 | 0 | 744, 297 | 0.01408 | 0.61854 |
| 440.0 | 547,417 | 415,210 | 0 | 962,626 | 0.01821 | 0.63674 |
| 450.0 | 238,599 | 229,763 | 0 | 468,362 | 0.00886 | 0.64560 |
| 460.0 | 257,016 | 328,633 | 0 | 585,649 | 0.01108 | 0.65668 |
| 470.0 | 138,992 | 215,912 | 0 | 354,904 | 0.00671 | 0.66339 |
| 480.0 | 0 | 203,820 | 0 | 203,820 | 0.00386 | 0.66725 |
| 490.0 | \% ${ }^{0}$ | 220,594 | 0 | 220,594 | 0.00417 | 0.67142 |
| 500.0 | 32,007 | 0 | 0 | 32,007 | 0.00061 | 0.67203 |
| 510.0 | 0 | 33,800 | 0 | 33,800 | 0.00064 | 0.67266 |
| 520.0 | 0 | 83,243 | 0 | 83,243 | 0.00157 | 0.67424 |
| TOTAL | 20,102,208 | 15,544,813 | 0 | 35,647,021 | | |

Table D. 19.-- Pacific herring. Section a, CPUE estinates by stratum

| STRATUM | AREA SO. MI. | SAMPLES | TOTAL HAULS | haULS WITH CATCH | haUls WITH NUMS. | HAULS WITH L-F | MEAN CPUE
 KG/HA | VARIANCE MEAN CPUE KG/HA | MEAN CPUE NO/HA | VARIANCE MEAN CPUE NO/HA |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 10 | 22,704. | 2,627,943 | 58 | 17 | 17 | 0 | 19.76 | . $345870 \mathrm{E}+03$ | 71.88 | .457140E+04 |
| 20 | 11,962. | 1,384,553 | 31 | 13 | 13 | 0 | 0.42 | . $330972 \mathrm{E}-01$ | 1.83 | . $553107 \mathrm{E}+00$ |
| 30 | 27,559. | 3,189,999 | 66 | 10 | 10 | 0 | 0.06 | .848208E-03 | 0.33 | . 183040E-01 |
| 31 | 2,558. | 296,105 | 9 | 3 | 3 | 0 | 0.19 | . $105112 \mathrm{E}-01$ | 0.61 | . $956443 \mathrm{E}-01$ |
| SUBTOTAL | 30,118. | 3,486,104 | 75 | 13 | 13 | 0 | 0.07 | . $786070 \mathrm{E}-03$ | 0.35 | . $160166 \mathrm{E}-01$ |
| 40 | 18,281. | 2,116,073 | 44 | 24 | 24 | 0 | 0.30 | .655492E-02 | 1.24 | . 100071E+00 |
| 41 | 7,001. | 810,309 | 31 | 11 | 11 | 0 | 0.89 | . $306312 \mathrm{E}+00$ | 3.43 | . $424647 \mathrm{E}+01$ |
| 42 | 6,154. | 712,328 | 21 | 5 | 5 | 0 | 0.31 | .420858E-01 | 1.46 | . $925684 \mathrm{E}+00$ |
| subtotal | 31,436. | 3,638,710 | 96 | 40 | 40 | 0 | 0.44 | .190202E-01 | 1.77 | . $279907 \mathrm{E}+00$ |
| 50 | 11,310. | 1,309,140 | 27 | 0 | 0 | 0 | 0.00 | 0. | 0.00 | 0. |
| 60 | 25,704. | 2,975,204 | 60 | 11 | 11 | 0 | 0.26 | .169713E-01 | 0.95 | .218539E+00 |
| 61 | 1,874. | 216,948 | 7 | 5 | 5 | 0 | 1.78 | . $101905 \mathrm{E}+01$ | 7.08 | . $165121 \mathrm{E}+02$ |
| SUBTOTAL | 27,578. | 3,192,153 | 67 | 16 | 16 | 0 | 0.36 | . 194498E-01 | 1.37 | . $2661113 \mathrm{E}+00$ |
| 71 | 21,233. | 2,457,710 | 25 | 3 | 3 | 0 | 0.01 | .167034E-04 | 0.14 | .734862E-02 |
| 72 | 12,215. | 1,413,893 | 15 | 4 | 4 | 0 | 0.09 | .231503E-02 | 0.66 | .104433E+00 |
| 73 | 5,494. | 635,915 | 7. | 2 | 2 | 0 | 0.05 | .144299E-02 | 0.14 | . 103907E-01 |
| 74 | 6,202. | 717,847 | 13 | 0 | 0 | 0 | 0.00 | 0. | 0.00 | 0. |
| SUBTOTAL | 23,911. | 2,767,656 | 35 | 6 | 6 | 0 | 0.06 | .680360E-03 | 0.37 | .278036E-01 |
| 81 | 2,270. | 262,712 | 47 | 1 | 1 | 0 | 0.00 | .678877E-05 | 0.01 | .329961E-04 |
| 82 | 1,646. | - 190,552 | 28 | 0 | 0 | 0 | 0.00 | 0. | 0.00 | 0. |
| 83 | 1,281. | 148,224 | 31 | 0 | 0 | 0 | 0.00 | 0. | 0.00 | 0. |
| 84 | 965. | 111,735 | 27 | 0 | 0 | 0 | 0.00 | 0. | 0.00 | 0. |
| 100 | 45,144. | 5,225,365 | 60 | 9 | 9 | 0 | 0.03 | . 194562E-03 | 0.26 | .942562E-02 |
| 200 | 135,107. | 15,638,602 | 354 | 99 | 99 | 0 | 3.55 | .976885E+01 | 13.01 | .129119E+03 |
| 300 | 180,250. | 20,863,967 | 414 | 108 | 108 | 0 | 2.67 | $.548841 \mathrm{E}+01$ | 9.82 | . $725431 \mathrm{E}+02$ |
| 400 | $6,162$. | 713,222 | 133 | 1 | 1 | 0 | 0.00 | .921086E-06 | 0.00 | .447684E-05 |
| TOTAL | 186,412. | 21,577,189 | 547 | 109 | 109 | 0 | 2.58 | . $513158 \mathrm{E}+01$ | 9.49 | . $678266 \mathrm{E}+02$ |

Table O-19. --Pacific herring (Cont.). Section b, bi onass estimates by stratum

Table D. 19.-- Pacific herring (Cont.). Section c, popul ation number estinates by subarea.

| SIRATUM | MEAN | WT KG | POPULATION | VARIANCE POPULATION | $\begin{aligned} & \text { METHOD } \\ & \text { USED } \end{aligned}$ | EFF. DEG. FREEDOM | 95\% CONFIDENCE LIMITS LOWER | s - population UPPER |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 10 | | 0.275 | 559,746,529 | . $277205948 \mathrm{E}+18$ | 1 | 57.00 | 0 | 1,614,412,038 |
| 20 | | 0.229 | 7,503,144 | . $931000448 \mathrm{E}+13$ | 1 | 30.00 | 1,272,533 | 13,733,756 |
| 30 | | 0.191 | 3,103,492 | . $163549364 \mathrm{E}+13$ | 1 | 65.00 | 547,895 | 5,659,089 |
| 31 | | 0.305 | 538,847 | . $736327895 \mathrm{E}+11$ | 1 | 8.00 | 0 | 1,164,588 |
| SUBTOTAL | | 0.208 | 3,642,339 | $.170912643 \mathrm{E}+13$ | | 69.83 | 1,032,025 | 6,252,652 |
| 40 | | 0.244 | 7,754,842 | . $393450085 \mathrm{E}+13$ | 1 | 43.00 | 3,752,321 | 11,757,364 |
| 41 | | 0.259 | 8,246,967 | . $244822463 \mathrm{E}+14$ | 1 | 30.00 | 0 | 18,350,689 |
| 42 | | 0.215 | 3,088,518 | . $412424608 \mathrm{E}+13$ | 1 | 20.00 | 0 | 7,324,817 |
| SUBTOTAL | | 0.246 | 19,090,328 | . $325409932 \mathrm{E}+14$ | | 49.97 | 7,621,489 | 30,559,168 |
| 50 | | 0.000 | 0 | 0. | 1 | 0.00 | 0 | 0 |
| 60 | | 0.271 | 8,394,628 | . $169857587 \mathrm{E}+14$ | 1 | 59.00 | 147,544 | 16,641,712 |
| 61 | | 0.252 | 4,554,544 | . $682397686 E+13$ | 1 | 6.00 | 147, 0 | 10,946,779 |
| SUBTOTAL | | 0.264 | 12,949, 172 | $.238097355 \mathrm{E}+14$ | | 44.81 | 3,113,275 | 22,785,069 |
| 71 | | 0.051 | 998,020 | . $389752228 \mathrm{E}+12$ | 1 | 24.00 | 0 | 2,286,578 |
| 72 | | 0.134 | 2,774,794 | $.183312798 \mathrm{E}+13$ | 1 | 14.00 | - 0 | 5,678,975 |
| 73 | | 0.340 | 256,815 | . $368949379 E+11$ | 1 | 6.00 | - 0 | 726,837 |
| 74 | | 0.000 | 0 | 0. | 1 | 0.00 | 0 | 0 |
| SUBTOTAL | | 0.152 | 3,031,610 | .187002292E+13 | | 14.56 | 117,493 | 5,945,726 |
| 81 | | 0.454 | 4,472 | . $199960226 \mathrm{E}+08$ | 1 | 46.00 | 0 | 13,481 |
| 82 | | 0.000 | 0 | 0. | 1 | 0.00 | 0 | 0 |
| 83 | | 0.000 | 0 | 0. | 1 | 0.00 | 0 | 0 |
| 84 | | 0.000 | 0 | 0. | 1 | 0.00 | 0 | 0 |
| 100 | | 0.127 | 4,029,630 | $.225977515 E+13$ | 1 | 20.71 | 902,860 | 7,156,400 |
| 200 | | 0.273 | 602,931,512 | $.277273318 \mathrm{E}+18$ | 1 | 57.03 | 0 | 1,657,725,173 |
| 300 | | 0.272 | 606,961,142 | .277275577E+18 | 1 | 57.03 | 0 | 1,661,759,101 |
| 400 | | 0.454 | 4,472 | . $199960226 \mathrm{E}+08$ | 1 | 46.00 | 0 | 13,481 |
| TOTAL | | 0.272 | 606,965,614 | . $277275577 \mathrm{E}+18$ | | 57.03 | 0 | 1,661,763,573 |

Table D. 20.--G ant grenadier. Section a, CPUE estinates by stratum

| STRATUM | AREA SQ. MI. | SAMPLES | TOTAL haUlS | HAULS WITH CATCH | haUls WITH NUMS. | haUls HITH L-F | MEAN CPUE KG/HA | variance mean cpue KG/HA | MEAN CPUE NO/HA | VARIANCE MEAN CPUE NO/HA |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 81 | 2,270. | 262.712 | 34 | 6 | 6 | 5 | 1.23 | . $435431 \mathrm{E}+00$ | 0.23 | .117671E-01 |
| 82 | 1,646. | 190,552 | 23 | 7 | 7 | 5 | 13.80 | . $473122 \mathrm{E}+02$ | 3.05 | . $351036 \mathrm{E}+01$ |
| 83 | 1,281. | 148,224 | 26 | 20 | 20 | 10 | 14.48 | . $766085 \mathrm{E}+01$ | 6.49 | . $136525 \mathrm{E}+01$ |
| 84 | 965. | 111,735 | 17 | 17 | 17 | 17 | 68.50 | .268822E+03 | 18.38 | . $199576 \mathrm{E}+02$ |
| TOTAL | 6,162. | 713,222 | 100 | 50 | 50 | 37 | 17.88 | . $103648 \mathrm{E}+02$ | 5.12 | .800952E+00 |

Table 0-20.--Giant grenadier. Section b, biomass estimates by stratum.

Table D-20.--Giant grenadier. Section c, population number estimates by stratum.

| STRATUM | MEAN WT KG | POPULATION | VARIANCE POPULATION | $\begin{aligned} & \text { METHOD } \\ & \text { USED } \end{aligned}$ | EFF. DEG. FREEDOM | 95\% CONFIDENCE LIMITS LOWER | POPULATION UPPER |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 81 | 5.365 | 178,776 | . $713099692 E+10$ | 1 | 33.00 | 6,870 | 350,681 |
| 82 | 4.530 | 1,719,689 | . $111917972 E+13$ | 1 | 22.00 | 6,8 | 3,913.801 |
| 83 | 2.229 | 2,852,368 | $.263371062 \mathrm{E}+12$ | 1 | 25.00 | 1,795,182 | 3,909,554 |
| 84 | 3.731 | 6,078,073 | . $218780751 \mathrm{E}+13$ | 1 | 16.00 | 2,942,330 | 9,213,816 |
| total | 3.489 | 10,838,906 | $.357748929 E+13$ | | 35.66 | 6,990,448 | 14,667,364 |

Table D. 20.-- Giant grenadier (Cont.). Section d, population number estimes by sex and centineter length interval for the overall survey area.

| LENGTH(MM) | MALES | FEMALES | UNSEXED | TOTAL | PROPORTION | CUMULATIVE PROPORTION |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 150.0 | 17,479 | 4,134 | 0 | 21,613 | 0.00199 | 0.00199 |
| 160.0 | 104,080 | 50,308 | 0 | 154,388 | 0.01425 | 0.01625 |
| 170.0 | 129,627 | 149,999 | 0 | 269.626 | 0.02489 | 0.04114 |
| 180.0 | 249,967 | 198,918 | 0 | 448.885 | 0.04144 | 0.08258 |
| 190.0 | 434,342 | 346,826 | 0 | 781,168 | 0.07213 | U. 15471 |
| 200.0 | 384,073 | 324,650 | 0 | 708,723 | 0.06544 | 0.22015 |
| 210.0 | 320,883 | 560,966 | 0 | 881,849 | 0.08146 | 0.30161 |
| 220.0 | 330,410 | 446,647 | 0 | 777,057 | 0.07177 | 0.37338 |
| 230.0 | 170,379 | 388,427 | 0 | 558,806 | 0.05161 | 0.42499 |
| 240.0 | 123,316 | 463,403 | 0 | 586,718 | 0.05418 | 0.47917 |
| 250.0 | 96,889 | 398,973 | 0 | 495,862 | 0.04579 | 0.52496 |
| 260.0 | 53,353 | 380,399 | 0 | 433,752 | 0.04005 | 0.56502 |
| 270.0 | 17,343 | 291,161 | 0 | 308,504 | 0.02849 | 0.59350 |
| 280.0 | 8,859 | 661,959 | 0 | 670,818 | 0.06198 | 0.65548 |
| 290.0 | - 0 | 345,262 | 0 | 345,262 | 0.03187 | 0.68735 |
| 300.0 | 15,323 | 441,554 | 0 | 456,877 | 0.04219 | 0.72954 |
| 310.0 | +16.496 | 362,864 | 0 | 362,864 | 0.03351 | 0.76305 |
| 320.0 | 16,496 | 371,558 | 0 | 388,053 | 0.03583 | 0.79888 |
| 330.0 | 0 | 326,787 | 0 | 326,787 | 0.03018 | 0.82906 |
| 340.0 | 0 | 266,070 | 0 | 266,070 | 0.02456 | 0.85362 |
| 350.0 | 0 | 214,811 | 0 | 214,811 | 0.01984 | 0.87346 |
| 360.0 | 0 | 277,893 | 0 | 277,893 | 0.02566 | 0.89912 |
| 370.0 | 0 | 298,087 | 0 | 298,087 | 0.02753 | 0.92665 |
| 380.0 | 0 | 125,203 | 0 | 125,203 | 0.01156 | 0.93821 |
| 390.0 | 0 | 124,151 | 0 | 124,151 | 0.01146 | 0.94967 |
| 400.0 | 0 | 90,669 | 0 | 90,669 | 0.00837 | 0.95804 |
| 410.0 | 0 | 81.779 | 0 | 81,779 | 0.00755 | 0.96559 |
| 420.0 | 0 | 93,049 | 0 | 93,049 | 0.00859 | 0.97418 |
| 430.0 | 0 | 52,023 | 0 | 52,023 | 0.00480 | 0.97898 |
| 440.0 | 0 | 84,535 | 0 | 84,535 | 0.00781 | 0.98679 |
| 450.0 | 0 | 16,158 | 0 | 16,158 | 0.00149 | 0.98828 |
| 460.0 | 6,149 | 30,779 | 0 | 36,9928 | 0.00341 | 0.99169 |
| 490.0 | 5,182 | 52,252 | 0 | 57,433 | 0.00531 | 0.99700 |
| 500.0 | 0 | 7.635 | 0 | 7,635 | 0.00071 | 0.99770 |
| 510.0 | 0 | 5,643 | 0 | 5,643 | 0.00052 | 0.99823 |
| 520.0 | 0 | 5,643 | 0 | 5,643 | 0.00052 | 0.99875 |
| 590.0 | 0 | 5,216 | 0 | 5,216 | 0.00048 | 0.99923 |
| 620.0 | 0 | 8,366 | 0 | 8,366 | 0.00077 | 1.00000 |
| total | 2,484,149 | 8,344,757 | 0 | 10,828,906 | | |

| STRATUM | AREA SQ. MI. | SAMPLES | TOTAL HAULS | HAULS WITH CATCH | HAULS WITH NUMS. | $\begin{aligned} & \text { HAULS } \\ & \text { WITH } \\ & L=F \end{aligned}$ | MEAN CPUE KG/HA | VARIANCE mean cpue KG/HA | MEAN CPUE NO/HA | VARIANCE mean cpue NO/HA |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 81 | 2,270. | 262.712 | 34 | 1 | 1 | 0 | 0.02 | .263222E-03 | 0.07 | .511746E-02 |
| 82 | 1,646. | 190,552 | 23 | 2 | 2 | 1 | 1.54 | .117635E+01 | 13.85 | . $117769 \mathrm{E}+03$ |
| 83 | 1,281. | 148,224 | 26 | 15 | 15 | 1 | 7.42 | . $230016 \mathrm{E}+02$ | 26.02 | . $418197 \mathrm{E}+03$ |
| 84 | - 965. | 111,735 | 17 | 17 | 17 | 12 | 17.24 | . $227051 \mathrm{E}+02$ | 125.99 | .112336E+04 |
| TOTAL | 6,162. | 713,222 | 100 | 35 | 35 | 14 | 4.66 | .163470E+01 | 28.87 | . $540397 \mathrm{E}+02$ |

Table D-21.--Coryphaenoides spp. (Cont). Section b; biomass estimates by stratum.

Table D-21.--Coryphaenoides spp. (Cont.). Section C, population number estimates by stratum.

| STRATUM | MEAN WT KG | POPULATION | VARIANCE POPULATION | METHOD USED | EFF. DEG. FREEDOM | 95\% CONFIDENCE LIMITS LOWER | POPULATION UPPER |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 81 | 0.227 | 55,689 | . $310124119 \mathrm{E}+10$ | 1 | 33.00 | 0 | 169,054 |
| 82 | 0.112 | 7,819,505 | . $375473186 \mathrm{E}+14$ | 1 | 22.00 | 0 | 20,528,120 |
| 83 | 0.285 | 11,429,295 | . $806747712 \mathrm{E}+14$ | 1 | 25.00 | 0 | 29,932,037 |
| 84 | 0.137 | 41,714,945 | . $123145847 \mathrm{E}+15$ | 1 | 16.00 | 18,189,072 | 65,240,818 |
| TOTAL | 0.161 | 61,019,434 | . $241371038 \mathrm{E}+15$ | | 45.79 | 29.718.812 | 92,320,056 |

Table D. 21-- Coryphaenoi des spp. (Cont.). Section d, population number estimates by sex and centineter length interval for the overall survey area.

| LENGTH(MM) | *** | MALES *** | ** | FEMALES ** | ** | UNSEXED | ** | *** | TOTAL | \#\#\# | PROPORTION | cumulative
 PROPORTION |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 40.0 | | 371,986 | | 120,980 | | | 0 | | | ,967 | 0.00807 | 0.00807 |
| 50.0 | | 1,036,260 | | 422,944 | | | 0 | | 1,45 | , 204 | 0.02389 | 0.03196 |
| 60.0 | | 2,153,080 | | 393,469 | | | 0 | | 2,546 | ,549 | 0.04169 | 0.07364 |
| 70.0 | | 2,905,376 | | 789,939 | | | 0 | | 3,695 | ,316 | 0.06049 | 0.13413 |
| 80.0 | | 5,678,367 | | 1,783,332 | | | 0 | | 7.46 | . 698 | 0.12214 | 0.25628 |
| 90.0 | | 7,630,309 | | 2,231,626 | | | 0 | | 9,86 | , 935 | 0.16144 | 0.41771 |
| 100.0 | | 9,169,072 | | 4,582,512 | | | 0 | | 13,75 | ,584 | 0.22511 | 0.64282 |
| 110.0 | | 7,290,934 | | 6,161,582 | | | 0 | | 13,452 | ,517 | 0.22021 | 0.86303 |
| 120.0 | | 1,690,229 | | 4,658,106 | | | 0 | | 6,348 | , 335 | 0.10392 | 0.96695 |
| 130.0 | | 64,673 | | 1,740,559 | | | 0 | | 1,80 | , 232 | 0.02955 | 0.99650 |
| 140.0 | | 0 | | 126,108 | | | 0 | | | , 108 | 0.00206 | 0.99857 |
| 150.0 | | 0 | | 31,661 | | | 0 | | | , 661 | 0.00052 | 0.99908 |
| TOTAL | | 37,990,286 | | 23,042,819 | | | 0 | | 61,03 | , 105 | | |

Table 0-22..-Total shrimps. Section a, CPUE estimates by stratum.

| STRATUM | AREA SQ. Mt. | SAMPLES | TOTAL haULS | HAULS WITH CATCH | HAULS WITH NUMS. | HAULS WITH L-F | MEAN CPUE KG/HA | VARIANCE MEAN CPUE KG/HA | MEAN CPUE NO/HA | VARIANCE MEAN CPUE NO/HA |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 10 | 22,704. | 2,627,943 | 58 | 33 | 19 | 0 | 0.05 | .817618E-04 | 0.00 | 0. |
| 20 | 11,962. | 1,384,553 | 31 | 25 | 22 | 0 | 0.07 | . $363909 \mathrm{E}-03$ | 0.00 | 0. |
| 30 | 27,559. | 3,189,999 | 66 | 17 | 13 | 0 | 0.05 | .474959E-03 | 0.00 | 0. |
| 31 | 2,558. | 296,105 | 9 | 0 | 0 | 0 | 0.00 | 0. | 0.00 | 0. |
| SUBTOTAL | 30,118. | 3,486,104 | 75 | 17 | 13 | 0 | 0.05 | .397701E-03 | 0.00 | 0. |
| 40 | 18,281. | 2,116,073 | 44 | 13 | 10 | 0 | 0.01 | .104071E-04 | 0.00 | 0. |
| 41 | 7,001. | 810,309 | 31 | 3 | 3 | 0 | 0.00 | . 532328E-05 | 0.34 | .694465E-01 |
| 42 | 6,154. | 712,328 | 21 | 12 | 10 | 0 | 0.06 | .696407E-03 | 0.00 | 0. |
| SUBTOTAL | 31,436. | 3,638,710 | 96 | 28 | 23 | 0 | 0.02 | . 304723E-04 | 0.08 | .344396E-02 |
| 50 | 11,310. | 1,309,140 | 27 | 19 | 16 | 0 | 0.04 | .449538E-03 | 0.00 | 0. |
| 60 | 25,704. | 2,975,204 | 60 | 43 | 25 | 0 | 0.32 | .460487E-02 | 0.00 | 0. |
| 61 | 1,874. | 216,948 | 7 | 3 | 2 | 0 | 0.08 | .254398E-02 | 0.00 | 0. |
| SUBTOTAL | 27,578. | 3,192,153 | 67 | 46 | 27 | 0 | 0.30 | .401197E-02 | 0.00 | 0. |
| 71 | 21,233. | 2,457,710 | 25 | 23 | 2 | 0 | 0.29 | .770191E-02 | 0.00 | 0. |
| 72 | 12,215. | 1,413,893 | 15 | 14 | 2 | 0 | 0.47 | . 164680E-01 | 0.00 | 0. |
| 73 | 5,494. | 635,915 | 7 | 7 | 4 | 0 | 0.07 | . $442631 \mathrm{E}-03$ | 0.00 | 0. |
| 74 | 6,202. | 717,847 | 13 | 12 | 8 | 0 | 0.07 | . $992015 \mathrm{E}-03$ | 0.00 | 0. |
| SUBTOTAL | 23,911. | 2,767,656 | 35 | 33 | 14 | 0 | 0.27 | . $438795 \mathrm{E}-02$ | 0.00 | 0. |
| 81 | 2,270. | 262,712 | 47 | 40 | 24 | 0 | 0.45 | - 827502E-02 | 0.00 | 0. |
| 82 | 1,646. | 190,552 | 28 | 23 | 8 | 0 | 0.37 | .698841E-02 | 0.00 | 0. |
| 83 | 1,281. | 148,224 | 31 | 15 | 14 | 0 | 0.07 | . 100471E-02 | 0.00 | 0. |
| 84 | 965. | 111,735 | 27 | 18 | 18 | 0 | 0.07 | .667577E-03 | 2.78 | .109266E+01 |
| 100 | 45,144. | 5,225,365 | 60 | 56 | 16 | 0 | 0.28 | .293482E-02 | 0.00 | 0. |
| 200 | 135,107. | 15,638,602 | 354 | 168 | 120 | 0 | 0.09 | . 196882E-03 | 0.02 | .186447E-03 |
| 300 | 180,250. | 20,863,967 | 414 | 224 | 136 | 0 | 0.14 | . 294699E-03 | 0.01 | . 104751E-03 |
| 400 | 6,162. | 713,222 | 133 | 96 | 64 | 0 | 0.29 | . 168135E-02 | 0.44 | .268172E-01 |
| TOTAL | 186,412. | 21,577,189 | 547 | 320 | 200 | 0 | 0.15 | .277378E-03 | 0.03 | .127241E-03 |

Table 0-22.--Total shrimps (Cont.). Section b, biomass estimates by stratum.

| STRATUH | BIOMASS MT | VARIANCE BIOMASS | EFF. DEG. FREEDOM | $95 \% \text { CONF }$ | IDENCE LIMITS LOWER | BIOMASS UPPER |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 10 | 376 | . $495797289 E+04$ | 57.00 | | 235 | 517 |
| 20 | 299 | .612538370E+04 | 30.00 | | 139 | 459 |
| 30 | 502 | . $424383911 \mathrm{E}+05$ | 65.00 | | 90 | 914 |
| 31 | 0 | 0. | 0.00 | | 0 | 0 |
| SUBTOTAL | 502 | . 424383911 +05 | 65.00 | | 90 | 914 |
| 40 | 57 | . $409179254 \mathrm{E}+03$ | 43.00 | | 16 | 98 |
| 41 | 8 | . $306904408 \mathrm{E}+02$ | 30.00 | | 0 | 19 |
| 42 | 126 | . $310273461 E+04$ | 20.00 | | 10 | 242 |
| SUBTOTAL | 191 | . $354260430 E+04$ | 25.86 | | 69 | 313 |
| 50 | 145 | .676489343E+04 | 26.00 | | 0 | 314 |
| 60 | 2,806 | . $357908985 E+06$ | 59.00 | | 1,609 | 4,003 |
| 61 | 53 | . $105135365 \mathrm{E}+04$ | 6.00 | | 1,609 | +132 |
| SUBTOTAL | 2,859 | . $358960339 E+06$ | 59.34 | | 1,660 | 4,058 |
| 71 | 2,099 | . $408490331 \mathrm{E}+06$ | 24.00 | | 780 | 3,418 |
| 72 | 1,954 | . $289066070 \mathrm{E}+06$ | 14.00 | | 800 | 3,107 |
| 73 | 137 | . $157167341 \mathrm{E}+04$ | 6.00 | | 40 | 234 |
| 74 | 159 | . $448852730 \mathrm{E}+04$ | 12.00 | | 13 | 305 |
| SUBTOTAL | 2,249 | . $295126271 \mathrm{E}+06$ | 14.59 | | 1,091 | 3,407 |
| 81 | 347 | . $501476246 \mathrm{E}+04$ | 46.00 | | 205 | 490 |
| 82 | 209 | . $222806147 \mathrm{E}+04$ | 27.00 | | 112 | 306 |
| 83 | 29 | . $193820182 \mathrm{E}+03$ | 30.00 | | 1 | 58 |
| 84 | 22 | .731815033E+02 | 26.00 | | 4 | 40 |
| 100 | 4,348 | .703616602E+06 | 38.31 | | 2,649 | 6,047 |
| 200 | 4,372 | .422789584E+06 | 81.14 | | 3,076 | 5,668 |
| 300 | 8,720 | . $112640619 \mathrm{E}+07$ | 83.88 | | 6,606 | 10,834 |
| 400 | 608 | . $750982562 \mathrm{E}+04$ | 77.04 | | 435 | 780 |
| total | 9,328 | . $113391601 \mathrm{E}+07$ | 85.00 | | 7,207 | 11,448 |
| | CONFIDENCE LIMITS | | | | | |
| | TOTAL | BIOMASS MT | TOTAL | Pulation | | |
| | | OWER | L | IER | UPPER | |
| 80.000 PERCENT | | ,951 | 619,886 | | 621,762,822 | |
| 90.000 PERCENT | | ,554 | 619,612 | | 622,036,310 | |
| 95.000 PERCENT | | ,207 | 619,371 | 36 | 622,277,631 | |

Table D-22.--Total shrimps (Cont.). Section c, population number estimates by stratum

| STRATUM | MEAN | WT KG | POPULATION | VARIANCE POPULATION | $\begin{aligned} & \text { METHOD } \\ & \text { USED } \end{aligned}$ | EFF. DEG. FREEDOM | | CONFIDENCE LIMITS LOWER | - POPULATION UPPER |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 10 | | 0.007 | 53,333,007 | 0. | 3 | 0.00 | | 0 | 0 |
| 20 | | 0.004 | 79,664,962 | 0. | 3 | 0.00 | | 0 | 0 |
| 30 | | 0.046 | 10,992,095 | 0. | 3 | 0.00 | | 0 | 0 |
| 31 | | 0.000 | 0 | 0. | 1 | 0.00 | | 0 | 0 |
| SUBTOTAL | | 0.046 | 10,992,095 | 0. | | 0.00 | | 0 | 0 |
| 40 | | 0.018 | 3,200,015 | 0. | 3 | 0.00 | | 0 | 0 |
| 41 | | 0.010 | 826,101 | . $400381786 \mathrm{E}+12$ | 1 | 30.00 | | 0 | 2,118,191 |
| 42 | | 0.010 | 12,432,689 | $0 .$ | 3 | 0.00 | | 0 | 2,18, 0 |
| SUBTOTAL | | 0.012 | 16,458,805 | . $400381786 \mathrm{E}+12$ | | 30.00 | | 15,166,714 | 17,750,895 |
| 50 | | 0.009 | 15,789,367 | 0. | 3 | 0.00 | | 0 | 0 |
| 60 | | 0.017 | 164,380,218 | 0. | 3 | 0.00 | | 0 | 0 |
| 61 | | 0.012 | 4,444,537 | 0. | 3 | 0.00 | | 0 | 0 |
| SUBTOTAL | | 0.017 | 168,824,755 | 0. | | 0.00 | | 0 | 0 |
| 71 | | 0.019 | 109,888,126 | 0. | 3 | 0.00 | | 0 | 0 |
| 72 | | 0.019 | 100,495,342 | 0. | 3 | 0.00 | | 0 | 0 |
| 73 | | 0.007 | 18,712,416 | 0. | 3 | 0.00 | | 0 | 0 |
| 74 | | 0.014 | 11,735,576 | 0. | 3 | 0.00 | | 0 | 0 |
| SUBTOTAL | | 0.017 | 130,943,335 | 0. | | 0.00 | | 0 | 0 |
| 81 | | 0.016 | 22,314, 143 | 0. | 3 | 0.00 | | 0 | 0 |
| 82 | | 0.020 | 10,342,601 | 0. | 3 | 0.00 | | 0 | 0 |
| 83 | | 0.022 | 1,353,315 | 0. | 3 | 0.00 | | 0 | 0 |
| 84 | | 0.024 | 920,073 | $.119780291 \mathrm{E}+12$ | 1 | 26.00 | | 208,506 | 1,631,640 |
| 100 | | 0.018 | 240,831,461 | 0. | 3 | 0.00 | | 0 | 0 |
| 200 | | 0.013 | 345,062,991 | . $400381786 \mathrm{E}+12$ | 3 | 30.00 | | 343,770,900 | 346,355,081 |
| 300 | | 0.015 | 585,894,452 | .400381786E+12 | 3 | 30.00 | | 584,602,361 | 587,186,542 |
| 400 | | 0.017 | 34,930,132 | . $119780291 \mathrm{E}+12$ | 1 | 26.00 | | 34,218,565 | 35,641,699 |
| total | | 0.015 | 620,824, 583 | . $520162078 \mathrm{E}+12$ | | 45.90 | | 619,371,536 | 622,277,631 |

Table D. 23.--Squids. Section a, CPUE estinates by stratum

| STRATUM | AREA SO. MI. | SAMPLES | TOTAL HAULS | HAULS WITH
 CATCH | HAULS WITH
 NUMS. | HAULS HITH L-F | MEAN CPUE KG/HA | VARIANCE MEAN CPUE KG/HA | MEAN CPUE NO/HA | VARIANCE mean cpue NO/HA |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 10 | 22,704. | 2,627,943 | 58 | 0 | 0 | 0 | 0.00 | 0. | 0.00 | 0. |
| 20 | 11,962. | 1,384,553 | 31 | 0 | 0 | 0 | 0.00 | 0. | 0.00 | 0. |
| 30 | 27,559. | 3,189,999 | 66 | 0 | 0 | 0 | 0.00 | 0. | 0.00 | 0. |
| 31 | 2,558. | 296,105 | 9 | 1 | 1 | 0 | 0.00 | .223212E-04 | 0.05 | .271224E-02 |
| SUBTOTAL | 30,118. | 3,486,104 | 75 | 1 | 1 | 0 | 0.00 | .161037E-06 | 0.00 | .195676E-04 |
| - 40 | 18,281. | 2,116,073 | 44 | 0 | 0 | 0 | 0.00 | 0. | 0.00 | 0. |
| 41 | 7,001. | 810,309 | 31 | 0 | 0 | 0 | 0.00 | 0. | 0.00 | 0. |
| 42 | 6,154. | 712,328 | 21 | 0 | 0 | 0 | 0.00 | 0. | 0.00 | 0. |
| SUBTOTAL | 31,436. | 3,638,710 | 96 | 0 | 0 | 0 | 0.00 | 0. | 0.00 | 0. |
| 50 | 11,310. | 1,309,140 | 27 | 1 | 1 | 0 | 0.00 | . $405788 \mathrm{E} \cdot 06$ | 0.01 | . 197229E-03 |
| . 60 | 25,704. | 2,975,204 | 60 | 9 | 9 | 0 | 0.01 | .468605E-04 | 0.12 | .216031E-02 |
| 61 | 1.874. | 216,948 | 7 | 0 | 0 | 0 | 0.00 | 0. | 0.00 | 0 |
| SUBTOTAL | 27,578. | 3,192,153 | 67 | 9 | 9 | 0 | 0.01 | .407074E-04 | 0.12 | .187665E-02 |
| 71 | 21,233. | 2,457,710 | 25 | 0 | 0 | 0 | 0.00 | 0. | 0.00 | 0. |
| 72 | 12,215. | 1,413,893 | 15 | 0 | 0 | 0 | 0.00 | 0. | 0.00 | 0. |
| 73 | 5,494. | 635,915 | 7 | 0 | 0 | 0 | 0.00 | 0. | 0.00 | 0. |
| 74 | 6,202. | 717,847 | 13 | 0 | 0 | 0 | 0.00 | 0. | 0.00 | 0. |
| SUBTOTAL | 23,911. | 2,767,656 | 35 | 0 | 0 | 0 | 0.00 | 0. | 0.00 | 0. |
| 81 | 2,270. | 262,712 | 47 | 43 | 43 | 0 | 1.49 | .957321E-01 | 3.99 | .401608E+00 |
| 82 | 1,646. | 190,552 | 28 | 28 | 28 | 0 | 1.03 | . $4696675 \mathrm{E}-01$ | 2.74 | . $237667 E+00$ |
| 83 | 1,281. | 148,224 | 31 | 29 | 29 | 0 | 0.89 | . 221052E-01 | 2.24 | $.150438 \mathrm{E}+00$ |
| 84 | 965. | 111,735 | 27 | 18 | 18 | 0 | 0.13 | . 133967 -02 | 0.37 | .865363E-02 |
| 100 | 45,144.- | 5,225,365 | 60 | 0 | 0 | 0 | 0.00 | 0. | 0.00 | 0. |
| 200 | 135,107. | 15,638,602 | 354 | 11 | 11 | 0 | 0.00 | .170692E-05 | 0.03 | . 805449E-04 |
| 300 | 180,250. | 20,863,967 | 414 | 11 | 11 | 0 | 0.00 | .958992E-06 | 0.02 | .452523E-04 |
| 400 | $6,162$. | 713,222 | 133 | 118 | 118 | 0 | 1.03 | . 173289E-01 | 2.73 | .781639E-01 |
| TOTAL | 186,412. | 21,577,189 | 547 | 129 | 129 | 0 | 0.04 | .198301E-04 | 0.11 | .127712E-03 |

Table D. 23.-- Squids (Cont.). Section b, bi onass estinates by stratum

Table D-23.--Squids (Cont.). Section c, population number estinates by stratum

| STRATUM | MEAN | HT KG | POPULATION | VARIANCE POPULATION | METHOD USED | EFF. DEG. FREEDOM | 95\% CONFIDENCE LIMITS LOWER | - POPULATION UPPER |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 10 | | 0.000 | 0 | 0. | 1 | 0.00 | 0 | 0 |
| 20 | | 0.000 | 0 | 0. | 1 | 0.00 | 0 | 0 |
| 30 | | 0.000 | 0 | 0. | 1 | 0.00 | 0 | 0 |
| 31 | | 0.091 | 45,695 | . 208804672E+10 | 1 | 8.00 | 0 | 151,068 |
| SUBTOTAL | | 0.091 | 45,695 | . $208804672 \mathrm{E}+10$ | | 8.00 | 0 | 151,068 |
| 40 | | 0.000 | 0 | 0. | 1 | 0.00 | 0 | 0 |
| 41 | | -0.000 | 0 | 0. | 1 | 0.00 | 0 | 0 |
| 42 | | 0.000 | 0 | 0. | 1 | 0.00 | 0 | 0 |
| SUBTOTAL | | 0.000 | 0 | 0. | | 0.00 | 0 | 0 |
| 50 | | 0.045 | 54,479 | .296800508E+10 | 1 | 26.00 | 0 | 166,489 |
| 60 | | 0.089 | 1,101,485 | . $167908051 \mathrm{E}+12$ | 1 | 59.00 | 281,523 | 1,921,447 |
| 61 | | 0.000 | . 0 | 0. | 1 | 0.00 | 28, 0 | 1,921,447 |
| SUBTOTAL | | 0.089 | 1,101,485 | $.167908051 \mathrm{E}+12$ | | 59.00 | 281,523 | 1,921,447 |
| 71 | | 0.000 | 0 | 0. | 1 | 0.00 | 0 | 0 |
| 72 | | 0.000 | 0 | 0. | 1 | 0.00 | 0 | 0 |
| 73 | | 0.000 | 0 | 0. | 1 | 0.00 | 0 | 0 |
| 74 | | 0.000 | 0 | 0. | 1 | 0.00 | 0 | 0 |
| SUBTOTAL | | 0.000 | 0 | 0. | | 0.00 | 0 | 0 |
| 81 | | 0.373 | 3,105,623 | . $243379351 \mathrm{E}+12$ | 1 | 46.00 | 2,111,701 | 4,099,545 |
| 82 | | 0.374 | 1,547,535 | . $757736655 \mathrm{E}+11$ | 1 | 27.00 | 982,681 | 2,112,390 |
| 83 | | 0.398 | 984,125 | . $290210961 \mathrm{E}+11$ | 1 | 30.00 | 636,259 | 1,331,992 |
| 84 | | 0.336 | 123.639 | .948632243E+09 | 1 | 26.00 | 60,315 | 186,964 |
| 100 | | 0.000 | 0 | 0. | 1 | 0.00 | 0 | 0 |
| 200 | | 0.087 | 1,201,659 | $.172964103 \mathrm{E}+12$ | 1 | 62.49 | 370,157 | 2,033,161 |
| 300 | | 0.087 | 1,201,659 | $.172964103 \mathrm{E}+12$ | 1 | 62.49 | 370,157 | 2,033,161 |
| 400 | | 0.377 | 5,760,923 | . $349122745 \mathrm{E}+12$ | 1 | 79.75 | 4,583,130 | 6,938,716 |
| total | | 0.327 | 6,962,582 | . $522086848 \mathrm{E}+12$ | | 135.80 | 5,531,929 | 8,393,236 |

Table D. 24.--Octopus. Section a, CPUE estimates by stratum

| STRATUM | AREA | SO. MI. | SAMPLES | total HAULS | HAULS WITH CATCH | $\begin{aligned} & \text { HAULS } \\ & \text { HITH } \\ & \text { NUMS. } \end{aligned}$ | $\begin{aligned} & \text { HAULS } \\ & \text { HITH } \\ & L-F \end{aligned}$ | MEAN CPUE KG/HA | VARIANCE mean cpue KG/HA | MEAN CPUE NO/HA | Variance mean cpue NO/HA |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 10 | | 22,704. | 2,627,943 | 58 | 0 | 0 | 0 | 0.00 | 0. | 0.00 | 0. |
| 20 | | 11,962. | 1,384,553 | 31 | 0 | 0 | 0 | 0.00 | 0. | 0.00 | 0. |
| 30 | | 27,559. | 3,189,999 | 66 | 2 | 2 | 0 | 0.02 | . $366873 \mathrm{E}-03$ | 0.03 | . $355838 \mathrm{E}-03$ |
| 31 | | 2,558. | 296,105 | 9 | 1 | 1 | 0 | 0.85 | . $723205 \mathrm{E}+00$ | 0.05 | .271224E-02 |
| SUBTOTAL | | 30,118. | 3,486,104 | 75 | 3 | 3 | 0 | 0.09 | .552480E-02 | 0.03 | .317524E-03 |
| 40 | | 18,281. | 2,116,073 | 44 | 0 | 0 | 0 | 0.00 | 0. | 0.00 | 0. |
| 41 | | 7,001. | 810,309 | 31 | 2 | 2 | 0 | 0.13 | .150487E-01 | 0.05 | .173053E-02 |
| 42 | | 6,154. | 712,328 | 21 | 0 | 0 | 0 | 0.00 | 0. | 0.00 | |
| subtotal | | 31,436. | 3,638,710 | 96 | 2 | 2 | 0 | 0.03 | .746287E-03 | 0.01 | .858196E-04 |
| 50 | | 11,310. | 1,309,140 | 27 | 5 | 5 | 0 | 0.51 | .848050E-01 | 0.06 | .805801E-03 |
| 60 | | 25,704. | 2,975,204 | 60 | 16 | 16 | 0 | 0.81 | .776027E-01 | 0.47 | .320119E-01 |
| 61 | | 1,874. | 216,948 | 7 | 0 | 0 | 0 | 0.00 | 0. | 0.00 | 0. |
| SUBTOTAL | | 27,578. | 3,192,153 | 67 | 16 | 16 | 0 | 0.75 | .674129E-01 | 0.43 | .278085E-01 |
| 71 | | 21,233. | 2,457,710 | 25 | 1 | 1 | 0 | 0.00 | .164427E-04 | 0.03 | .719261E-03 |
| 72 | | 12,215. | 1,413,893 | 15 | 3 | 3 | 0 | 0.03 | .236675E-03 | 0.25 | .207507E-01 |
| 73 | | 5,494. | 635,915 | 7 | 1 | 1 | 0 | 0.01 | . 125760E-03 | 0.03 | .955065E-03 |
| 74 | | 6,202. | 717,847 | 13 | 0 | 0 | 0 | 0.00 | 0. | 0.00 | |
| SUBTOTAL | | 23,911. | 2,767,656 | 35 | 4 | 4 | 0 | 0.02 | .684069E-04 | 0.13 | . $546596 \mathrm{E}-02$ |
| 81 | | 2,270. | 262,712 | 47 | 6 | 6 | 0 | 0.04 | . 891064E-03 | 0.02 | .891362E-04 |
| 82 | | 1,646. | 190,552 | 28 | 11 | 11 | 0 | 0.09 | .964007E-03 | 0.12 | .120819E-02 |
| 83 | | 1,281. | 148,224 | 31 | 10 | 10 | 0 | 0.03 | . $112385 \mathrm{E}-03$ | 0.10 | .870114E-03 |
| 84 | | 965. | 111,735 | 27 | 8 | 8 | 0 | 0.06 | .630964E-03 | 0.06 | . 521817E-03 |
| 100 | | 45,144. | 5,225,365 | 60 | 5 | 5 | 0 | 0.01 | .228282E-04 | 0.08 | . 169252E-02 |
| 200 | | 135,107. | 15,638,602 | 354 | 26 | 26 | 0 | 0.22 | .371799E-02 | 0.10 | . $118471 \mathrm{E}-02$ |
| 300 | | 180,250. | 20,863,967 | 414 | 31 | 31 | 0 | 0.17 | .209030E-02 | 0.10 | .771767E-03 |
| 400 | | 6,162. | 713,222 | 133 | 35 | 35 | 0 | 0.05 | .210048E-03 | 0.07 | .148722E-03 |
| TOTAL | | 186,412. | 21,577,189 | 547 | 66 | 66 | 0 | 0.17 | .195462E-02 | 0.10 | . 721752E-03 |

Table D. 24.--Octopus (Cont). Section b, bi onass estimates by stratum

Table D. 24.--Octopus (Cont). Section c, population number estimates by stratum

| STRATUM | MEAN | WT KG | POPULATION | VARIANCE POPULATION | $\begin{aligned} & \text { METHOD } \\ & \text { USED } \end{aligned}$ | EFF. DEG. FREEDOM | 95\% CONFIDENCE LIMITS LOWER | POPULATION UPPER |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 10 | | 0.000 | 0 | 0. | 1 | 0.00 | 0 | 0 |
| 20 | | 0.000 | 0 | 0. | 1 | 0.00 | 0 | 0 |
| 30 | | 0.782 | 252,005 | . $317947640 \mathrm{E}+11$ | 1 | 65.00 | 0 | 608,330 |
| 31 | | 16.329 | 45,695 | . $208804672 \mathrm{E}+10$ | 1 | 8.00 | 0 | 151,068 |
| SUBTOTAL | | 3.169 | 297,700 | $.338828108 \mathrm{E}+11$ | | 71.32 | 0 | 665,171 |
| 40 | | 0.000 | 0 | 0. | 1 | 0.00 | 0 | 0 |
| 41 | | 2.383 | 126,436 | .997707633E+10 | 1 | 30.00 | 0 | 330,402 |
| 42 | | 0.000 | 0 | 0. | 1 | 0.00 | 0 | - 0 |
| SUBTOTAL | | 2.383 | 126,436 | $.997707633 \mathrm{E}+10$ | | 30.00 | 0 | 330,402 |
| 50 | | 7.936 | 250,384 | $.121261282 E+11$ | 1 | 26.00 | 23,980 | 476,788 |
| 60 | | 1.735 | 4,112,625 | $.248809773 E+13$ | 1 | 59.00 | 956,227 | 7,269,022 |
| 61 | | 0.000 | 0 | 0. | 1 | 0.00 | 0 | 0 |
| SUBTOTAL | | 1.735 | 4,112,625 | . $248809773 \mathrm{E}+13$ | | 59.00 | 956,227 | 7,269,022 |
| 71 | | 0.151 | 195,315 | . $381478243 \mathrm{E}+11$ | 1 | 24.00 | 0 | 598,444 |
| 72 | | 0.116 | 1,030,073 | $.364240178 \mathrm{E}+12$ | 1 | 14.00 | 0 | 2,324,630 |
| 73 | | 0.363 | 58,234 | . $339119782 \mathrm{E}+10$ | 1 | 6.00 | 0 | $200,733$ |
| 74 | | 0.000 | 0 | 0. | 1 | 0.00 | 0 | 0 |
| SUBTOTAL | | 0.130 | 1,088,307 | $.367631376 E+12$ | | 14.26 | 0 | 2,388,876 |
| 81 | | 1.655 | 17,614 | . $540175885 \mathrm{E}+08$ | 1 | 46.00 | 2,806 | 32,421 |
| 82 | | 0.729 | 66,194 | . $385198440 \mathrm{E}+09$ | 1 | 27.00 | 25,921 | 106,468 |
| 83 | | 0.283 | 42,000 | . $167854528 \mathrm{E}+09$ | 1 | 30.00 | 15,544 | 68,456 |
| 84 | | 0.995 | 19,188 | $.572028887 E+08$ | 1 | 26.00 | 3,638 | 34,738 |
| 100 | | 0.133 | 1,283,621 | .405779200E+12 | 1 | 17.26 | 0 | 2,627,708 |
| 200 | | 2.166 | 4,787,145 | . $254408375 \mathrm{E}+13$ | 1 | 61.67 | 1,598,172 | 7,976,119 |
| 300 | | 1.736 | 6,070,766 | $.294986295 \mathrm{E}+13$ | 1 | 76.00 | 2,644,894 | 9,496,639 |
| 400 | | 0.748 | 144.995 | .664273445E+09 | 1 | 66.62 | 93,509 | 196,482 |
| TOTAL | | 1.713 | 6,215,762 | . $295052722 E+13$ | | 76.04 | 2,789,503 | 9,642,021 |

APPENDIX E

Age-Length Keys for Principal Species of Fish

Appendix E presents age-length keys for principal species of fish by sex and sexes combined for which age samples collected during the 1988 bottom trawl survey have been read. Asterisks denote fish lengths for which ages have been interpolated.

```
List of Tables
```

Table
Page
E-l. Age-length keys for walleye pollock from age datacollected on the continental shelf during the 1988bottom trawl survey.318
E-2. Age-length keys for walleye pollock from age datacollected on the continental slope during the 1988bottom trawl survey..324
E-3. Age-length keys for Pacific cod from age data collected during the 1988 bottom trawl survey..................... 327
E-4. Age-length keys for yellowfin sole from age data collected during the 1988 bottom trawl survey........ 334
E-5. Age-length keys for rock sole from age data collected during the 1988 bottom trawl survey 337

Table E-1.--Age-length keys for walleye pollock from age data collected on the continental shelf during the 1988 bottom trawl survey.
Male key

| LEN GTH | AVG AGE | STD. DEV. | FREQUENCY | $\begin{array}{r} \text { AGE } \\ 0 \end{array}$ | $\begin{array}{r} \text { IN } \\ 1 \end{array}$ | $\begin{gathered} \text { YEAR } \\ 2 \end{gathered}$ | S) 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | $26+$ |
| :---: |
| 100 | 1.00 | 0.00 | 3 | 0 | 3 | 0 |
| 110 | 1.00 | 0.00 | 3 | 0 | 3 | 0 |
| 120 | 1.00 | 0.00 | 6 | 0 | 6 | 0 |
| 130 | 1.00 | 0.00 | 9 | 0 | 9 | 0 |
| 140 | 1.00 | 0.00 | 10 | 0 | 10 | 0 |
| 150 | 1.00 | 0.00 | 8 | 0 | 8 | 0 |
| 160 | 1.00 | 0.00 | 7 | 0 | 7 | 0 |
| 170 | 1.43 | 0.53 | 7 | 0 | 4 | 3 | 0 |
| 180 | 1.00 | 0.00 | 1 | 0 | 1 | 0 |
| 190 | 1.60 | 0.55 | 5 | 0 | 2 | 3 | 0 |
| 200 | 2.00 | 0.00 | 2 | 0 | 0 | 2 | 0 |
| 210 | 2.00 | 0.00 | 1 | 0 | 0 | 1 | 0 |
| 220 | 2.00 | 0.00 | 4 | 0 | 0 | 4 | 0 |
| 230 | 2.00 | 0.00 | 2 | 0 | 0 | 2 | 0 |
| 240 | 2.00 | 0.00 | 2 | 0 | 0 | 2 | 0 |
| 250 | 2.25 | 0.50 | 4 | 0 | 0 | 3 | 1 | 0 |
| 260 | 3.00 | 0.00 | 1 | 0 | 0 | 0 | 1 | 0 |
| 270 | 2.00 | 0.00 | 1 | 0 | 0 | 1 | 0 |
| 280 | 2.00 | 0.00 | 1 | 0 | 0 | 1 | 0 |
| 290 | 2.20 | 0.45 | 5 | 0 | 0 | 4 | 1 | 0 |
| 300 | 2.50 | 0.71 | 2 | 0 | 0 | 1 | 1 | 0 |
| 310 | 3.00 | 1.00 | 3 | 0 | 0 | 1 | 1 | 1 | 0 |
| 320 | 3.50 | 1.00 | 4 | 0 | 0 | 1 | 0 | 3 | 0 |
| 330 | 3.83 | 0.41 | 6 | 0 | 0 | 0 | 1 | 5 | 0 |
| 340 | 4.00 | 0.53 | 8 | 0 | 0 | 0 | 1 | 6 | 1 | 0 |
| 350 | 3.75 | 0.46 | 8 | 0 | 0 | 0 | 2 | 6 | 0 |
| 360 | 3.46 | 0.66 | 13 | 0 | 0 | 0 | 8 | 4 | 1 | 0 |
| 370 | 4.00 | 0.93 | 15 | 0 | 0 | 0 | 5 | 6 | 3 | 1 | 0 |
| 380 | 4.13 | 0.99 | 15 | 0 | 0 | 0 | 4 | 7 | 2 | 2 | 0 |
| 390 | 4.50 | 1.32 | 16 | 0 | 0 | 0 | 5 | 4 | 1 | 6 | 0 |
| 400 | 5.06 | 1.34 | 17 | 0 | 0 | 0 | 3 | 3 | 3 | 6 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 410 | 5.06 | 1.11 | 18 | 0 | 0 | 0 | 1 | 5 | 6 | 4 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 420 | 5.13 | 1.09 | 16 | 0 | 0 | 0 | 1 | 5 | 1 | 9 | 0 |

Table E-1.--(Cont.).
Male key

| $\begin{aligned} & \text { LEN } \\ & \text { GTH } \end{aligned}$ | $\begin{aligned} & \text { AVG } \\ & \text { AGE } \end{aligned}$ | $\begin{aligned} & \text { STD. } \\ & \text { DEV. } \end{aligned}$ | FREQUENCY | $\begin{array}{r} \text { AGE } \\ 0 \end{array}$ | $\begin{gathered} C 1 N \\ 1 \end{gathered}$ | $\begin{gathered} \text { YEAR } \\ 1 \end{gathered}$ | $(\text { RS })_{3}$ | 4 | 4 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | $26+$ | |
| :---: |
| 430 | 5.69 | 0.95 | 16 | 0 | 0 | 0 | 0 | 3 | 31 | 10 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
| 440 | 6.50 | 0.86 | 18 | 0 | 0 | 0 | 0 | 0 | 01 | 10 | 4 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
| 450 | 6.19 | 1.52 | 16 | 0 | 0 | 0 | 0 | 2 | 22 | 8 | 1 | 2 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
| 460 | 6.35 | 1.46 | 17 | 0 | 0 | 0 | 0 | 2 | 21 | 8 | 3 | 2 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
| 470 | 6.43 | 1.16 | 14 | 0 | 0 | 0 | 0 | 0 | 3 | 5 | 4 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
| 480 | 7.40 | 2.21 | 20 | 0 | 0 | 0 | 0 | 1 | 11 | 7 | 2 | 5 | 1 | 2 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
| 490 | 8.37 | 1.34 | 19 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 5 | 5 | 2 | 6 | 10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
| 500 | 8.81 | 1.47 | 16 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 1 | 3 | 2 | 8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
| 510 | 8.06 | 1.39 | 16 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 5 | 2 | 4 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
| 520 | 9.10 | 1.21 | 20 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 7 | 3 | 8 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
| 530 | 9.11 | 0.88 | 19 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 5 | 8 | 5 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
| 540 | 9.50 | 1.38 | 18 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 4 | 3 | 7 | 1 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
| 550 | 8.53 | 1.37 | 17 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 1 | 6 | 2 | 6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
| 560 | 9.84 | 1.07 | 19 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 0 | 15 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
| 570 | 9.88 | 1.05 | 17 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | 11 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
| 580 | 9.64 | 1.01 | 14 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 3 | 8 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
| 590 | 10.13 | 0.35 | 8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 7 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
| 600 | 10.29 | 0.99 | 14 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 9 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ω |
| 610 | 10.86 | 1.95 | 7 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 3 | 2 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | $\stackrel{-}{-}$ |
| 620 | 10.00 | 1.29 | 7 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 3 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 6 |
| 630 | 10.71 | 1.50 | 7 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 5 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
| 640 | 10.38 | 0.74 | 8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 6 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
| 650 | 12.50 | 1.91 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
| 660 | 10.83 | 1.17 | 6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
| 670 | 10.50 | 1.05 | 6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 2 | | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
| 680 | 10.67 | 1.15 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
| * 690 | 11.00 | 1.15 | 2.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.5 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | |
| 700 | 11.50 | 0.71 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
| * 710 | 11.00 | 1.41 | 1.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5 | 0.5 | 0.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | |
| 720 | 10.00 | 0.00 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
| TOTAL | 6.57 | 3.27 | | 0.0 | | 29.0 | | 63.0 | | 83.0 | | 54.0 | | 22.5 | | 17.5 | | 4.0 | | 0.0 | | 0.0 | | 0.0 | | 0.0 | | 0.0 | | 0.0 | |
| | | | 576.0 | | 53.0 | | 36.0 | | 27.0 | | 34.0 | 3 | 35.0 | 1 | 6.0 | | 1.0 | | 1.0 | | 0.0 | | 0.0 | | 0.0 | | 0.0 | | 0.0 | | |

Table E-1.--(Cont.).
Female key

| $\begin{aligned} & \text { LEN } \\ & \text { GTH } \end{aligned}$ | $\begin{aligned} & \text { AVG } \\ & \text { AGE } \end{aligned}$ | $\begin{aligned} & \text { STD. } \\ & \text { DEV. } \end{aligned}$ | fREQUENCY | $\begin{array}{r} \text { AGE } \\ 0 \end{array}$ | $\begin{array}{r} \text { (IN } \\ 1 \end{array}$ | $\begin{gathered} \text { YEAR } \\ 2 \end{gathered}$ | RS) 3 | 4 | 5 | 6 | 7 | 8 | 9 | 910 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | |
| :---: |
| 100 | 1.00 | 0.00 | 2 | 0 | 2 | 0 |
| 110 | 1.00 | 0.00 | 2 | 0 | 2 | 0 |
| 120 | 1.00 | 0.00 | 2 | 0 | 2 | 0 |
| 130 | 1.00 | 0.00 | 4 | 0 | 4 | 0 |
| 140 | 1.00 | 0.00 | 5 | 0 | 5 | 0 |
| 150 | 1.00 | 0.00 | 9 | 0 | 9 | 0 |
| 160 | 1.00 | 0.00 | 5 | 0 | 5 | 0 |
| 170 | 1.00 | 0.00 | 4 | 0 | 4 | 0 |
| 180 | 1.50 | 0.58 | 4 | 0 | 2 | 2 | 0 |
| - 190 | 1.67 | 0.58 | | 0.0 | | 2.0 | | 0.0 | | 0.0 | | 0.0 | | 0.0 | | 0.0 | | 0.0 | | 0.0 | | 0.0 | | 0.0 | | 0.0 | | 0.0 | | 0.0 |
| | | | 3.0 | | 1.0 | | 0.0 | | 0.0 | | 0.0 | | 0.0 | | 0.0 | | 0.0 | | 0.0 | | 0.0 | | 0.0 | | 0.0 | | 0.0 | | 0.0 | |
| 200 | 2.00 | 0.00 | 2 | 0 | 0 | 2 | 0 |
| 210 | 2.00 | 0.00 | 4 | 0 | 0 | 4 | 0 |
| 220 | 2.00 | 0.00 | 3 | 0 | 0 | 3 | 0 |
| 230 | 3.00 | 0.00 | 1 | 0 | 0 | 0 | 1 | 0 |
| 240 | 2.00 | 0.00 | 2 | 0 | 0 | 2 | 0 |
| 250 | 2.50 | 0.71 | 2 | 0 | 0 | 1 | 1 | 0 |
| 260 | 2.00 | 0.00 | 3 | 0 | 0 | 3 | 0 |
| 270 | 2.67 | 0.58 | 3 | 0 | 0 | 1 | 2 | 0 |
| 280 | 3.00 | 0.00 | 1 | 0 | 0 | 0 | 1 | 0 |
| 290 | 2.00 | 0.00 | 2 | 0 | 0 | 2 | 0 |
| 300 | 3.00 | 0.00 | 1 | 0 | 0 | 0 | 1 | 0 |
| 310 | 3.00 | 0.00 | 3 | 0 | 0 | 0 | 3 | 0 |
| 320 | 3.00 | 1.00 | 3 | 0 | 0 | 1 | 1 | 1 | 0 |
| 330 | 3.50 3.83 | 0.58 | 4 | 0 | 0 | 0 | 2 | 2 | 0 |
| 340 | 3.83 | 0.41 | 6 | 0 | 0 | 0 | 1 | 5 | 0 |
| 350 | 3.67 | 0.52 | 6 | 0 | 0 | 0 | 2 | 4 | 0 |
| 360 | 4.00 | 0.71 | 5 | 0 | 0 | 0 | 1 | 3 | 1 | 0 |
| 370 | 3.90 | 0.57 | 10 | 0 | 0 | 0 | 2 | 7 | 1 | 0 |
| 380 | 3.73 | 0.80 | 15 | 0 | 0 | 0 | 6 | 8 | 0 | 1 | 0 |
| 390 | 5.13 | 0.99 | 8 | 0 | 0 | 0 | 0 | 3 | 1 | 4 | 0 |
| 400 | 4.77 | 1.24 | 13 | 0 | 0 | 0 | 2 | 4 | 3 | 3 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 410 | 4.93 | 1.22 | 15 | 0 | 0 | 0 | 3 | 2 | 3 | 7 | 0 |
| 420 | 5.21 | 1.19 | 14 | 0 | 0 | 0 | 0 | 6 | 1 | 5 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 430 | 5.59 | 1.06 | 17 | 0 | 0 | 0 | 1 | 2 | 2 | 10 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 440 | 5.92 | 1.12 | 13 | 0 | 0 | 0 | 0 | 2 | 1 | 7 | 2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 450 | 6.06 | 1.73 | 16 | 0 | 0 | 0 | 1 | 2 | 1 | 8 | 2 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 460 | 5.67 | 1.18 | 15 | 0 | 0 | 0 | 1 | 1 | 3 | 8 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 470 | 6.64 | 1.01 | 14 | 0 | 0 | 0 | 0 | 0 | 1 | 7 | 2 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 480 | 6.75 | 1.36 | 12 | 0 | 0 | T 0 | 0 | 0 | 2 | 4 | 3 | 1 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 490 | 6.64 | 0.93 | 14 | 0 | 0 | 0 | 0 | 0 | 1 | 5 | 7 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

Table E-1.--(Cont.).
Female key

Table E－1．－－（Cont．）．
Sexes combined key

|

 | |
| :---: | :---: |
|
 | 皿号 |
| | |
| 000000000000000000000000000000000000000 | －号 |
| $0000000000000000000000000 N W \infty$ ががひひuル | $\rightarrow \stackrel{\text {－}}{2}$ |
| がNANNVルNWNWOOOOOOO N－NO－OOOOOOOOOOOOO | N ${ }_{\text {N }}^{\substack{\text { c }}}$ |
| | \uparrow |
| WAFWNWNOONNANO－000000000000000000000000 | u |
| | 0 |
| | \checkmark |
| avavunsooo0000000000000000000000000000000 | ∞ |
| $W W-0-000000000000000000000000000000000$ | \bigcirc |
| 000 | $\stackrel{\rightharpoonup}{0}$ |
| 0 | \pm |
| 00 | $\stackrel{\rightharpoonup}{n}$ |
| 000000000000000000000000000000000000 | $\stackrel{\rightharpoonup}{*}$ |
| 0000000000000000000000000000000000000 | $\stackrel{\sim}{\sim}$ |
| | \cdots |
| | $\stackrel{\sim}{0}$ |
| 0000000000000 | \sim |
| 000000000000000000000000000000000000000 | $\stackrel{\sim}{0}$ |
| 000000000000000000000000000000000000 | $\stackrel{\rightharpoonup}{0}$ |
| | ～ |
| 00000000000000000000000000000000000000 | $\xrightarrow{\sim}$ |
| 00 | N |
| 00000000000000000000000000000000000000 | N |
| 000000000000000000000000000000000000 | N |
| 00000000000000000000000000000000000000 | \sim |
| 0 | N |

Table E-1.--(Cont.).
Sexes combined key

Table E-2.--Age-length keys for walleye pollock from age data collected on the continental slope during the 1988 bottom trawl survey.
Male key

| $\begin{aligned} & \text { LEN } \\ & \text { GTH } \end{aligned}$ | $\begin{aligned} & \text { AVG } \\ & \text { AGE } \end{aligned}$ | $\begin{aligned} & \text { STD. } \\ & \text { DEV. } \end{aligned}$ | FREQUENCY | $\begin{array}{r} \text { AGE } \\ 0 \end{array}$ | $\begin{array}{r} \text { IN } \\ 1 \end{array}$ | $\begin{gathered} \text { YEAR } \\ 2 \end{gathered}$ | | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | | |
| :---: |
| 240 | 2.00 | 0.00 | 1 | 0 | 0 | 1 | | 0 |
| 340 | 3.00 | 0.00 | 1 | 0 | 0 | 0 | | 1 | 0 |
| 350 | 4.00 | 0.00 | 1 | 0 | 0 | 0 | | 0 | 1 | 0 |
| 360 | 3.00 | 0.00 | 1 | 0 | 0 | 0 | | 1 | 0 |
| 370 | 3.00 | 0.00 | 2 | 0 | 0 | 0 | | 2 | 0 |
| 380 | 3.67 | 1.15 | 3 | 0 | 0 | 0 | | 2 | 0 | 1 | 0 |
| 390 | 3.33 | 0.58 | 3 | 0 | 0 | 0 | | 2 | 1 | 0 |
| 400 | 3.40 | 0.55 | 5 | 0 | 0 | 0 | | 3 | 2 | 0 |
| 410 | 4.60 | 1.52 | 5 | 0 | 0 | 0 | | 2 | 0 | 1 | 2 | 0 |
| 420 | 4.40 | 1.52 | 5 | 0 | 0 | 0 | | 2 | 1 | 0 | 2 | 0 |
| 430 | 4.80 | 1.30 | 5 | 0 | 0 | 0 | | 1 | 1 | 1 | 2 | 0 |
| 440 | 5.17 | 1.17 | 6 | 0 | 0 | 0 | | 0 | 2 | 2 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 450 | 4.80 | 1.30 | 5 | 0 | 0 | 0 | | 1 | 1 | 1 | 2 | 0 |
| 460 | 6.50 | 1.22 | 6 | 0 | 0 | 0 | | 0 | 0 | 0 | 5 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 470 | 6.60 | 1.95 | 5 | 0 | 0 | 0 | | 0 | 0 | 1 | 3 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 480 | 6.40 | 0.55 | 5 | 0 | 0 | 0 | | 0 | 0 | 0 | 3 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 490 | 10.00 | 0.00 | 4 | 0 | 0 | 0 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 500 | 8.00 | 1.87 | 5 | 0 | 0 | 0 | | 0 | 0 | 0 | 2 | 0 | 0 | 2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 510 | 6.60 | 0.89 | 5 | 0 | 0 | 0 | | 0 | 0 | 0 | 3 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 520 | 8.40 | 1.82 | 5 | 0 | 0 | 0 | | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 530 | 8.80 | 1.79 | 5 | 0 | 0 | 0 | | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 540 | 9.00 | 1.41 | 5 | 0 | 0 | 0 | | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 550 | 10.00 | 0.00 | 1 | 0 | 0 | 0 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 560 | 10.00 | 0.00 | 1 | 0 | 0 | 0 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 570 | 8.50 | 2.12 | 2 | 0 | 0 | 0 | | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 580 | 11.00 | 0.00 | 1 | 0 | 0 | 0 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| TOTAL | 6.19 | 2.47 | 93 | 0 | 0 | 1 | 17 | 7 | 9 | 7 | 27 | 7 | 3 | 4 | 17 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

Table E-2.--(Cont.).
Female key

| $\begin{aligned} & \text { LEN } \\ & \text { GTH } \end{aligned}$ | $\begin{aligned} & \text { AVG } \\ & \text { AGE } \end{aligned}$ | $\begin{aligned} & \text { STD. } \\ & \text { DEV. } \end{aligned}$ | fREQUENCY | $\begin{array}{r} \text { AGE } \\ 0 \end{array}$ | $\begin{gathered} \text { CIN } \\ 1 \end{gathered}$ | $\begin{gathered} \text { YEAR } \\ 2 \end{gathered}$ | | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 14 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | | 26+ |
| :---: |
| 360 | 3.50 | 0.71 | 2 | 0 | 0 | 0 | 1 | 1 | 0 |
| 370 | 5.00 | 0.00 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
| * 380 | 4.00 | 1.41 | | 0.0 | | 0.0 | | 0.5 | | 0.0 | | 0.0 | | 0.0 | | 0.0 | | 0.0 | | 0.0 | | 0.0 | | 0.0 | | 0.0 | | 0.0 | | 0.0 |
| | | | 1.5 | | 0.0 | | 0.5 | | 0.5 | | 0.0 | | 0.0 | | 0.0 | | 0.0 | | 0.0 | | 0.0 | | 0.0 | | 0.0 | | 0.0 | | 0.0 | |
| 390 | 3.50 | 0.71 | 2 | 0 | 0 | 0 | 1 | 1 | 0 |
| 400 | 3.50 | 0.84 | 6 | 0 | 0 | 0 | 4 | 1 | 1 | 0 |
| 410 | 3.83 | 0.75 | 6 | 0 | 0 | 0 | 2 | 3 | 1 | 0 |
| 420 | 3.75 | 1.04 | 8 | 0 | 0 | 0 | 4 | 3 | 0 | 1 | 0 |
| 430 | 4.00 | 1.22 | 5 | 0 | 0 | 0 | 2 | 2 | 0 | 1 | 0 |
| 440 | 4.83 | 1.33 | 6 | 0 | 0 | 0 | 1 | 2 | 0 | 3 | 0 |
| 450 | 5.60 | 0.55 | 5 | 0 | 0 | 0 | 0 | 0 | 2 | 3 | 0 |
| 460 | 5.60 | 0.89 | 5 | 0 | 0 | 0 | 0 | 1 | 0 | 4 | 0 |
| 470 | 6.00 | 0.00 | 5 | 0 | 0 | 0 | 0 | 0 | 0 | 5 | 0 |
| 480 | 6.00 | 0.00 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 |
| 490 | 7.80 | 2.05 | 5 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 1 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 500 | 8.00 | 1.83 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 510 | 8.67 | 1.63 | 6 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 2 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 520 | 10.00 | 4.36 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 530 | 9.17 | 2.40 | 6 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 2 | 0 | 2 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 540 | 9.00 | 2.00 | 5 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 550 | 9.29 | 1.50 | 7 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 560 | 10.00 | 0.00 | 5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 570 | 10.40 | 1.52 | 5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 3 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 580 | 11.25 | 1.89 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 590 | 10.25 | 0.50 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 600 | 10.00 | 0.00 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 610 | 10.00 | 0.00 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 620 | 11.67 | 1.53 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 630 | 11.00 | 0.00 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| * 640 | 12.33 | 1.63 | | 0.0 | | 0.0 | | 0.0 | | 0.0 | | 0.0 | | 0.0 | | 0.0 | | 0.0 | | 0.0 | | 0.0 | | 0.0 | | 0.0 | | 0.0 | | 0.0 |
| | | | 1.5 | | 0.0 | | 0.0 | | 0.0 | | 0.0 | | 0.0 | | 0.5 | | 1.0 | | 0.0 | | 0.0 | | 0.0 | | 0.0 | | 0.0 | | 0.0 | |
| 650 | 13.00 | 0.00 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 690 | 12.00 | 0.00 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

Table E-2.--(Cont.).
Sexes combined key

| LEN GTH | $\begin{aligned} & \text { AVG } \\ & \text { AGE } \end{aligned}$ | $\begin{aligned} & \text { STD. } \\ & \text { DEV. } \end{aligned}$ | FREQUENCY | $\begin{array}{r} \text { AGE } \\ 0 \end{array}$ | $\begin{array}{r} \text { (IN } \\ 1 \end{array}$ | $\begin{array}{r} \text { YEA } \\ 2 \end{array}$ | ARS | 3 | 4 | | 5 | 6 | 67 | | 8 | | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | | 26+ |
| :---: |
| 240 | 2.00 | 0.00 | 1 | 0 | 0 | | 1 | 0 | 0 | | 0 | 0 | 0 | | 0 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 340 | 3.00 | 0.00 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | | 0 | 0 | | | 0 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 350 | 4.00 | 0.00 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | | 0 | 0 | | | 0 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 360 | 3.33 | 0.58 | 3 | 0 | 0 | 0 | 0 | 2 | 1 | | 0 | 0 | 0 | | 0 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 370 | 3.67 | 1.15 | 3 | 0 | 0 | 0 | 0 | 2 | 0 | | 1 | 0 | 0 | | 0 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 380 | 3.67 | 1.15 | 3 | 0 | 0 | 0 | 0 | 2 | 0 | | 1 | 0 | 0 | | 0 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 390 | 3.40 | 0.55 | 5 | 0 | 0 | 0 | 0 | 3 | 2 | | 0 | 0 | 0 | | 0 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 400 | 3.45 | 0.69 | 11 | 0 | 0 | 0 | 07 | 7 | 3 | | 1 | 0 | 0 | | 0 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 410 | 4.18 | 1.17 | 11 | 0 | 0 | 0 | 04 | 4 | 3 | | 2 | 2 | 0 | | 0 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 420 | 4.00 | 1.22 | 13 | 0 | 0 | 0 | 0 | 6 | 4 | | 0 | 3 | 0 | | 0 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 430 | 4.40 | 1.26 | 10 | 0 | 0 | 0 | 0 | 3 | 3 | | 1 | 3 | 0 | | 0 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 440 | 5.00 | 1.21 | 12 | 0 | 0 | 0 | 0 | 1 | 4 | | 2 | 4 | 1 | | 0 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 450 | 5.20 | 1.03 | 10 | 0 | 0 | 0 | 0 | 1 | 1 | | 3 | 5 | 0 | | 0 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 460 | 6.09 | 1.14 | 11 | 0 | 0 | 0 | 0 | 0 | 1 | | 0 | 9 | 0 | | 0 | | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 470 | 6.30 | 1.34 | 10 | 0 | 0 | 0 | 0 | 0 | 0 | | 1 | 8 | 0 | | 0 | | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 480 | 6.22 8.78 | 0.44 1.86 | 9 | 0 | 0 | 0 | 0 | 0 | 0 | | 0 | 7 | 2 | | 0 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 490 500 | 8.78 | 1.86 | 9 | 0 | 0 | 0 | 0 | 0 | 0 | | 0 | 2 | 1 | | 0 | | 0 | 6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 500 | 8.00 | 1.73 | 9 | 0 | 0 | 0 | 0 | 0 | 0 | | 0 | 3 | 1 | | 0 | | 3 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 510 520 | 7.73 9.00 | 1.68 2.83 | 11 | 0 | 0 | 0 | 0 | 0 | 0 | | 0 | 4 | 1 | | 3 | | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 5 | 9.00 | 2.83 | 8 | 0 | 0 | 0 | 0 | 0 | 0 | | 0 | 1 | 2 | | 1 | | 1 | 2 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 530 | 9.00 9.00 | 2.05 1.63 | 11 | 0 | 0 | 0 | 0 | 0 | 0 | | 0 | 2 | 0 | | 3 | | 0 | 5 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 540 550 | 9.00 | 1.63 | 10 | 0 | 0 | 0 | 0 | 0 | 0 | | 0 | 1 | 1 | | 2 | | 0 | 5 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 550 | 9.38 10.00 | 1.41 0.00 | 8 | 0 | 0 | 0 | - 0 | 0 | 0 | | 0 | 1 | 0 | | 0 | | 1 | 6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 570 | 9.86 | 1.77 | 7 | 0 | 0 | 0 | 0 | 0 | 0 | | 0 | 0 | 1 | | 0 | | 1 | 6 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 580 | 11.20 | 1.64 | 5 | 0 | 0 | 0 | 0 | | 0 | | 0 | 0 | 0 | | 0 | | 0 | 2 | 2 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 590 | 10.25 | 0.50 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | | 0 | 0 | 0 | | 0 | | 0 | 3 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 600 | 10.00 | 0.00 | 2 | 0 | 0 | 0 | 0 | | 0 | | 0 | 0 | 0 | | 0 | | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 610 | 10.00 | 0.00 | 1 | 0 | 0 | 0 | 0 | | 0 | | 0 | 0 | 0 | | 0 | | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 620 | 11.67 | 1.53 | 3 | 0 | 0 | 0 | 0 | | 0 | | 0 | 0 | 0 | | 0 | | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 630 | 11.00 | 0.00 | 1 | 0 | 0 | 0 | 0 | | 0 | 0 | | 0 | 0 | | 0 | | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
| - 640 | 12.33 | 1.63 | | 0.0 | | 0.0 | | | 0.0 | | | 0.0 | | | . 0 | | | 0.0 | | 0.0 | | 0.0 | | 0.0 | | 0.0 | | 0.0 | | 0.0 | | 0.0 | | 0.0 |
| | | | 1.5 | | 0.0 | | 0.0 | | | 0.0 | | | 0.0 | | | 0. | 0 | | 0.5 | | 1.0 | | 0.0 | | 0.0 | | 0.0 | | 0.0 | | 0.0 | | 0.0 | |
| 650 | 13.00 | 0.00 | 2 | 0 | 0 | 0 | 0 | | 0 | | 0 | 0 | 0 | | 0 | | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 690 | 12.00 | 0.00 | 1 | 0 | 0 | 0 | 0 | | 0 | | 0 | 0 | 0 | | 0 | | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| total | 6.87 | 2.90 | | 0.0 | | 1.0 32.0 | | 23.0 | | | 55.0 | | | 9.0 | | 49.0 | | | $5.5^{2.0}$ | | 1.0 | | $1.0{ }^{0.0}$ | | $0.0{ }^{0.0}$ | | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0 | | 0.0 |
| | | 213.5 | | | | | | 12.0 | | | 10.0 | 7. | | | | | 6.0 | | | | 0.0 | 0.0 | | | | | | | | | | |

Table E-3.--Age-length keys for Pacific cod from age data collected during the 1988 bottom trawl survey.
Male key

Table E-3.--(Cont.).
Male key

| LEN GTH | AVG
 AGE | $\begin{aligned} & \text { STD. } \\ & \text { DEV. } \end{aligned}$ | FREQUENCY | $\begin{array}{r} \text { AGE } \\ 0 \end{array}$ | $\begin{array}{r} \text { CIN } \\ 1 \end{array}$ | $\begin{gathered} \text { YEAF } \\ 1 \\ 2 \end{gathered}$ | ${ }^{\text {RS }} 3$ | 34 | 45 | 5 | 6 | 7 | 78 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | | |
| :---: |
| 480 | 3.78 | 0.44 | 9 | 0 | 0 | 0 | - 2 | 27 | 70 | |
| 490 | 3.89 | 0.33 | 9 | 0 | 0 | 0 | 1 | 18 | 30 | |
| 500 | 4.17 | 0.41 | 6 | 0 | 0 | 0 | 0 | 05 | 51 | 1 | 0 | |
| 510 | 4.11 | 0.33 | 9 | 0 | 0 | 0 | 0 | - 8 | 1 | 1 | 0 | |
| 520 | 4.22 | 0.44 | 9 | 0 | 0 | 0 | 0 | - 7 | 7 | 2 | 0 | |
| 530 | 4.44 | 0.53 | 9 | 0 | 0 | 0 | 0 | 0 | 4 | 4 | 0 | |
| 540 | 4.43 | 0.53 | 7 | 0 | 0 | 0 | 0 | - 4 | 3 | 3 | 0 | |
| 550 | 5.00 | 0.00 | 4 | 0 | 0 | 0 | 0 | 0 | 4 | 4 | 0 | |
| 560 | 5.00 | 0.87 | 9 | 0 | 0 | 0 | 0 | 0 | 6 | 6 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
| 570 | 4.78 | 0.67 | 9 | 0 | 0 | 0 | 0 | - 3 | 5 | 5 | 1 | 0 | |
| 580 | 5.00 | 0.50 | 9 | 0 | 0 | 0 | 0 | - 1 | 7 | 7 | 1 | 0 | |
| 590 | 5.10 | 0.57 | 10 | 0 | 0 | 0 | 0 | - 1 | - 7 | 7 | 2 | 0 | |
| 600 | 5.14 | 0.38 | 7 | 0 | 0 | 0 | 0 | 0 | - 6 | 6 | 1 | 0 | |
| 610 | 5.17 | 0.41 | 6 | 0 | 0 | 0 | 0 | 0 | - 5 | 5 | 1 | 0 | |
| 620 | 5.29 | 0.49 | 7 | 0 | 0 | 0 | 0 | 0 | 5 | 5 | 2 | 0 | |
| 630 | 5.63 | 0.74 | 8 | 0 | 0 | 0 | 0 | 0 | - 4 | 4 | 3 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
| 640 | 5.83 | 0.41 | 6 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 5 | 0 | |
| 650 | 5.40 | 0.55 | 5 | 0 | 0 | 0 | 0 | 0 | 3 | 3 | 2 | 0 | |
| 660 | 5.67 | 0.52 | 6 | 0 | 0 | 0 | 0 | - 0 | 2 | 2 | 4 | 0 | ω |
| 670 | 6.50 | 0.55 | 6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | \cdots |
| 680 | 6.50 | 0.71 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
| 690 | 6.00 | 0.00 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | |
| 700 | 7.80 | 1.10 | 5 | 0 | 0 | 0 | - 0 | - 0 | 0 | O | 0 | 3 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
| 710 | 7.30 | 0.67 | 10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 5 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
| 720 | 8.63 | 1.41 | 8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | 2 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
| 730 | 7.50 | 1.00 | 4 | 0 | 0 | 0 | 0 | - 0 | - 0 | 0 | 0 | 3 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
| 740 | 9.67 | 2.08 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
| 750 | 9.00 | 1.67 | 6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 2 | 1 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
| 760 | 9.67 | 1.53 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
| 770 | 9.25 | 1.89 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | | 0 | 0 | 2 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
| * 780 | 8.80 | 2.22 | | 0.0 | | 0.0 | | 0.0 | | | 0.0 | | 1.0 | | 0.0 | | 0.5 | | 0.0 | | 0.0 | | 0.0 | | 0.0 | | 0.0 | | 0.0 | | 0.0 | |
| | | | 2.5 | | 0.0 | | 0.0 | | 0.0 | | | 0.5 | | 0.5 | | 0.0 | | 0.0 | | 0.0 | | 0.0 | | 0.0 | | 0.0 | | 0.0 | | 0.0 | | |
| 790 | 7.00 | 0.00 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
| 800 | 9.67 | 1.53 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
| 810 | 10.50 | 0.71 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
| 820 | 10.00 | 1.41 | 2 | 0 | 0 | 0 | | 0 | 0 | | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
| 880 | 11.00 | 0.00 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
| 930 | 11.00 | 0.00 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
| TOTAL | 4.75 | 2.30 | | 0.0 | | 19.5 | | 75.0 | | | | | 14.0 | | 4.0 | | 2.5 | | 0.0 | | 0.0 | | 0.0 | | 0.0 | | 0.0 | | 0.0 | | 0.0 | |
| | | | 324.5 | 20 | 0.5 | | 54.0 | | 66.0 | | | 1.5 | | 9.5 | | 9.0 | | 0.0 | | 0.0 | | 0.0 | | 0.0 | | 0.0 | | 0.0 | | 0.0 | | |

Table E-3.--(Cont.).
Female key

Table E-3.--(Cont.).
Female key

Table E-3.--(Cont.).
Sexes combined key

Table E-3.--(Cont.).
Sexes combined key

| LEN GTH | $\begin{aligned} & \text { AVG } \\ & \text { AGE } \end{aligned}$ | $\begin{aligned} & \text { STD. } \\ & \text { DEV. } \end{aligned}$ | FREQUENCY | $\begin{array}{r} \text { AGE } \\ 0 \end{array}$ | $\begin{array}{r} \text { (IN } \\ 1 \end{array}$ | $\begin{gathered} \text { YEAR } \\ 2 \end{gathered}$ | S) 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | | $26+$ |
| :---: |
| 450 | 3.63 | 0.50 | 16 | 0 | 0 | 0 | 6 | 10 | 0 |
| 460 | 3.47 | 0.62 | 17 | 0 | 0 | 1 | 7 | 9 | 0 |
| 470 | 3.76 | 0.44 | 17 | 0 | 0 | 0 | 4 | 13 | 0 |
| 480 | 3.75 | 0.86 | 16 | 0 | 0 | 1 | 4 | 10 | 0 | 1 | 0 |
| 490 | 3.67 | 0.49 | 18 | 0 | 0 | 0 | 6 | 12 | 0 |
| 500 | 4.07 | 0.26 | 15 | 0 | 0 | 0 | 0 | 14 | 1 | 0 |
| 510 | 4.17 | 0.62 | 18 | 0 | 0 | 0 | 1 | 14 | 2 | 1 | 0 |
| 520 | 4.22 | 0.55 | 18 | 0 | 0 | 0 | 1 | 12 | 5 | 0 |
| 530 | 4.21 | 0.58 | 14 | 0 | 0 | 0 | 1 | 9 | 4 | 0 |
| 540 | 4.44 | 0.51 | 16 | 0 | 0 | 0 | 0 | 9 | 7 | 0 |
| 550 | 4.62 | 0.51 | 13 | 0 | 0 | 0 | 0 | 5 | 8 | 0 |
| 560 | 4.89 | 0.66 | 19 | 0 | 0 | 0 | 0 | 4 | 14 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 570 | 4.87 | 0.52 | 15 | 0 | 0 | 0 | 0 | 3 | 11 | 1 | 0 |
| 580 | 5.06 | 0.64 | 18 | 0 | 0 | 0 | 0 | 2 | 14 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 590 | 5.06 | 0.57 | 16 | 0 | 0 | 0 | 0 | 2 | 11 | 3 | 0 |
| 600 | 5.08 | 0.49 | 13 | 0 | 0 | 0 | 0 | 1 | 10 | 2 | 0 |
| 610. | 5.07 | 0.47 | 14 | 0 | 0 | 0 | 0 | 1 | 11 | 2 | 0 |
| 620 | 5.09 | 0.54 | 11 | 0 | 0 | 0 | 0 | 1 | 8 | 2 | 0 |
| 630 | 5.40 | 0.63 | 15 | 0 | 0 | 0 | 0 | 0 | 10 | 4 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 640 | 5.89 | 0.33 | 9 | 0 | 0 | 0 | 0 | 0 | 1 | 8 | 0 |
| 650 | 5.44 | 0.53 | 9 | 0 | 0 | 0 | 0 | 0 | 5 | 4 | 0 |
| 660 | 5.75 | 0.45 | 12 | 0 | 0 | 0 | 0 | 0 | 3 | 9 | 0 |
| 670 | 6.42 | 0.67 | 12 | 0 | 0 | 0 | 0 | 0 | 1 | 5 | 6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 680 | 6.60 | 0.70 | 10 | 0 | 0 | 0 | 0 | 0 | 0 | 5 | 4 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 690 | 6.63 | 0.74 | 8 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 3 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 700 | 7.50 | 0.93 | 8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 6 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 710 | 7.43 | 0.65 | 14 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 6 | 7 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 720 | 8.14 | 1.35 | 14 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 4 | 4 | 3 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 730 | 7.86 | 0.90 | 7 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 740 | 8.83 | 1.72 | 6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 2 | 2 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 750 | 8.70 | 1.57 | 10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 2 | 2 | 1 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 760 | 8.64 | 1.43 | 11 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 5 | 1 | 1 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 770 | 9.00 | 1.55 | 6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 2 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 780 | 9.40 | 2.07 | 5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 790 | 8.29 | 1.11 | 7 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | 2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 800 | 9.20 | 1.30 | 5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 810 | 10.20 | 0.84 | 5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 820 | 11.00 | 1.87 | 5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 2 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 830 | 11.00 | 0.00 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 840 | 11.50 | 0.71 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 880 | 11.00 | 0.00 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

Table E- 3.--(Cont.).
Sexes conbi ned key

Table E-4.--Age-Length keys for yelloufin sole from age data collected during the 1988 bottom traw survey.
Hale key

| 90 | 3.00 | 0.00 | 1 | 0 | 0 | 0 | 1 | 0 | |
| :---: |
| 100 | 3.60 | 0.55 | 5 | 0 | 0 | 0 | 2 | 3 | 0 | |
| 110 | 4.50 | 0.71 | 2 | 0 | 0 | 0 | 0 | 1 | 1 | 0 |
| 120 | 4.90 | 0.88 | 10 | 0 | 0 | 0 | 0 | 3 | 6 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 130 | 5.10 | 0.32 | 10 | 0 | 0 | 0 | 0 | 0 | 9 | 1 | 0 |
| 140 | 5.73 | 1.01 | 11 | 0 | 0 | 0 | 0 | 0 | 7 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 150 | 5.67 | 0.98 | 12 | 0 | 0 | 0 | 0 | 0 | 8 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 160 | 6.62 | 0.96 | 13 | 0 | 0 | 0 | 0 | 0 | 3 | 0 | 9 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 170 | 6.69 | 1.01 | 16 | 0 | 0 | 0 | 0 | 0 | 3 | 1 | 11 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 180 | 7.00 | 0.00 | 13 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 13 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 190 | 6.86 | 1.23 | 14 | 0 | 0 | 0 | 0 | 0 | 3 | 1 | 6 | 3 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 200 | 6.92 | 0.95 | 13 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 8 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 210 | 7.27 | 0.88 | 15 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 9 | 4 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 220 | 7.21 | 0.97 | 14 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 7 | 4 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 230 | 7.67 | 0.78 | 12 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 6 | 4 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 240 | 8.00 | 0.41 | 13 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 11 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 250 | 9.09 | 1.22 | 11 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 2 | 5 | 1 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 260 | 8.33 | 0.71 | 9 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
| 270 | 10.89 | 3.26 | 9 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | 1 | 2 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 280 | 11.17 | 2.69 | 12 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 4 | 1 | 1 | 0 | 1 | 3 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 290 | 14.00 | 3.80 | 10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 1 | 0 | 1 | 3 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
| 300 | 14.46 | 3.28 | 13 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 3 | 1 | 1 | 1 | 2 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
| 310 | 16.00 | 3.37 | 10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 2 | 2 | 0 | 0 | 2 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | |
| 320 | 16.63 | 3.58 | 8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 2 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 |
| 330 | 18.89 | 2.67 | 9 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 3 | 3 | 0 | 0 | 0 | 0 | |
| 340 | 19.00 | 4.18 | 5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | |
| 350 | 16.25 | 3.20 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | |
| * 360 | 17.00 | 3.74 | | 0.0 | | 0.0 | | 0.0 | | 0.0 | | 0.0 | | 0.0 | | 0.0 | | 0.5 | | 0.0 | | 0.0 | | 0.5 | | 0.0 | | 0.0 | | 0.0 |
| | | | 2.5 | | 0.0 | | 0.0 | | 0.0 | | 0.0 | | 0.0 | | 0.0 | | 0.5 | | 0.0 | | 0.0 | | 1.0 | | 0.0 | | 0.0 | | 0.0 | |
| 370 | 20.00 | 0.00 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | |

Table E-4.--(Cont.).
Female key

| LEN GTH | $\begin{aligned} & \text { AVG } \\ & \text { AGE } \end{aligned}$ | $\begin{aligned} & \text { STO. } \\ & \text { DEV. } \end{aligned}$ | FREQUENCY | $\begin{array}{r} \text { AGE } \\ 0 \end{array}$ | (IN | $\begin{gathered} \text { YEAR } \\ 2 \end{gathered}$ | $\begin{aligned} & \text { ARS) } \\ & 2 \end{aligned}$ | 4 | 45 | | 67 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | | $26+$ |
| :---: |
| 70 | 2.00 | 0.00 | 1 | 0 | 0 | 1 | 0 | 0 | 00 | 0 | 00 | 0 | 0 | 0 | 0 | 0 | . 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| - 80 | 2.50 | 0.00 | | 0.0 | | 0.5 | | 0.0 | | 0.0 | | 0.0 | | 0.0 | | 0.0 | | 0.0 | | 0.0 | | 0.0 | | 0.0 | | 0.0 | | 0.0 | | 0.0 |
| | | | 1.0 | | 0.0 | | 0.5 | | 0.0 | | 0.0 | | 0.0 | | 0.0 | | 0.0 | | 0.0 | | 0.0 | | 0.0 | | 0.0 | | 0.0 | | 0.0 | |
| 90 | 3.00 | 0.00 | 1 | 0 | 0 | 0 | | 0 | 0 | 0 | 00 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 100 | 4.20 | 0.84 | 5 | 0 | 0 | 0 | - 1 | 2 | 22 | 0 |
| 110 | 4.63 | 0.74 | 8 | 0 | 0 | 0 | 0 | 4 | 43 | 1 | 10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 120 | 4.67 | 0.50 | 9 | 0 | 0 | 0 | 0 | 3 | 36 | 0 |
| 130 | 5.00 | 0.00 | 10 | 0 | 0 | 0 | 0 | 0 | 010 | 0 |
| 140 | 5.50 | 1.07 | 8 | 0 | 0 | 0 | 0 | 0 | 06 | 1 | 1.0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 150 | 6.67 | 1.30 | 12 | 0 | 0 | 0 | 0 | 0 | 04 | 0 | 04 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 160 | 6.57 | 0.94 | 14 | 0 | 0 | 0 | 0 | 0 | 03 | 1 | 19 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 170 | 6.87 | 0.83 | 15 | 0 | 0 | 0 | 0 | 0 | 02 | 0 | 11 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 180 | 7.06 | 0.43 | 17 | 0 | 0 | 0 | 0 | 0 | 0 0 | 1 | 1.14 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 190 | 7.21 | 0.43 | 14 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 011 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 200 | 7.13 | 1.15 | 16 | 0 | 0 | 0 | 0 | 0 | 02 | 1 | 18 | 3 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 210 | 7.27 | 0.70 | 15 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 110 | 3 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 220 | 7.67 | 0.72 | 15 | 0 | 0 | 0 | 0 | 0 | 00 | 0 | 07 | 76 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 230 | 7.80 | 1.08 | 15 | 0 | 0 | 0 | 0 | 0 | 00 | 0 | 07 | 7 6 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 240 | 7.82 | 1.25 | 11 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 06 | 6 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 250 | 8.80 | 1.14 | 10 | 0 | 0 | 0 | 0 | 0 | 00 | 0 | 01 | 3 | 4 | | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 260 | 8.38 | 1.41 | 8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 03 | - 1 | 3 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 270 | 9.00 | 1.33 | 10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 5 | 2 | 2 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 280 | 10.75 | 3.91 | 12 | 0 | 0 | 0 | 0 | 0 | 00 | 0 | 0 | - 1 | 7 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
| 290 | 13.23 | 3.72 | 13 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 2 | 0 | 0 | 3 | 2 | , | 2 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 |
| 300 | 11.67 | 3.54 | 15 | 0 | 0 | 0 | 0 | 0 | 00 | 0 | 0 | - 1 | 5 | 2 | 2 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 310 | 12.86 | 4.11 | 14 | 0 | 0 | 0 | 0 | 0 | 0 0 | 0 | 01 | 1 | 1 | 2 | 1 | 1 | 1 | 1 | 1 | 2 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
| 320 | 14.00 | 2.29 | 14 | 0 | 0 | 0 | 0 | 0 | 00 | 0 | 0 | 0 | 1 | 0 | 1 | | | 4 | 4 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 330 | 15.93 | 3.97 | 14 | 0 | 0 | 0 | 0 | 0 | 00 | | 0 | 0 | 0 | 0 | 1 | 4 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 2 | 0 | 0 | 0 | 0 |
| 340 | 16.36 | 3.23 | 14 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 1 | 2 | 0 | 3 | 2 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 |
| 350 | 16.53 | 3.72 | 15 | 0 | 0 | 0 | 0 | 0 | 00 | 0 | 0 0 | 0 | 0 | 0 | 1 | 1 | 3 | 0 | 2 | 1 | 0 | 1 | 2 | 2 | 1 | 0 | . 1 | 0 | 0 | 0 |
| 360 | 18.67 | 4.48 | 15 | 0 | 0 | 0 | 0 | 0 | 00 | 0 | 0 0 | 0 | 0 | 0 | 1 | 0 | 0 | 4 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 3 | 0 | 2 | 1 | 0 |
| 370 | 19.30 | 3.50 | 10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 1 | 0 | 0 | 0 | 0 | 4 | 0 | 0 | 2 | 2 | 0 | 0 | 0 |
| 380 | 18.82 | 4.58 | 11 | 0 | 0 | 0 | 0 | 0 | 00 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 2 | 0 | 1 | 0 | 1 |
| 390 | 18.50 | 3.70 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
| 400 | 24.00 | 0.00 | 1 | 0 | 1 | 0 | 0 |
| 410 | 17.00 | 0.00 | 1 | 0 | 0 | | 0 | 0 | 00 | | 00 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 420 | 31.00 | 0.00 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
| * 430 | 24.50 | 0.00 | | 0.0 | | 0.0 | | 0.0 | | 0.0 | | 0.0 | | 0.0 | | 0.0 | | 0.0 | | 0.0 | | 0.5 | | 0.0 | | 0.0 | | 0.0 | | 0.5 |
| | | | 1.0 | | 0.0 | | 0.0 | | 0.0 | | 0.0 | | 0.0 | | 0.0 | | 0.0 | | 0.0 | | 0.0 | | 0.0 | | 0.0 | | 0.0 | | 0.0 | |
| 440 | 18.00 | 0.00 | 1 | 0 | 0 | 0 | 0 | 0 | 00 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| TOTAL 10.50 | | 5.34 | | 0.0 | 0.0 | 1.52 .5 | | ${ }^{9.0} 38.0$ | | 6.0 | 92.0 | 47.0 | | 8.0 | 11.0 | 14.0 | | 17.0 | | 9.0 | | 8.5 | | 7.0 | | 12.0 | | 4.0 | | 2.5 |
| | | 371.0 | | | | | | 32.0 | 12.0 | | | | 11.0 | | | | 8.0 | | 11.0 | | 3.0 | | 4.0 | | | 1.0 | |

Table E-4.‥(Cont.).
Sexes combined key

| $\begin{aligned} & \text { LEN } \\ & \text { GTH } \end{aligned}$ | $\begin{aligned} & \text { AVG } \\ & \text { AGE } \end{aligned}$ | $\begin{aligned} & \text { STD. } \\ & \text { DEV. } \end{aligned}$ | FREQUENCY | $\begin{array}{r} \text { AGE } \\ 0 \end{array}$ | $\begin{array}{r} \text { IN } \\ 1 \end{array}$ | $\begin{gathered} \text { YEAF } \\ 2 \end{gathered}$ | | 4 | 45 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | | 26+ |
| :---: |
| 70 | 2.00 | 0.00 | 1 | 0 | 0 | 1 | 0 |
| - 80 | 2.67 | 0.82 | | 0.0 | | 0.5 | | 0.0 | | | . 0 | | 0.0 | | 0.0 | | 0.0 | | 0.0 | | 0.0 | | 0.0 | | 0.0 | | 0.0 | | 0.0 | | 0.0 |
| | | | 1.5 | | 0.0 | | 1.0 | | 0.0 | | | 0.0 | | 0.0 | | 0.0 | | 0.0 | | 0.0 | | 0.0 | | 0.0 | | 0.0 | | 0.0 | | 0.0 | |
| 90 | 3.00 | 0.00 | 2 | 0 | 0 | 0 | 2 | 0 | 0 | O | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | - 0 | 0 | 0 | 0 |
| 100 | 3.90 | 0.74 | 10 | 0 | 0 | 0 | 3 | 5 | 5 | | 0 |
| 110 | 4.60 | 0.70 | 10 | 0 | 0 | 0 | 0 | 5 | 54 | 4 | 1 | 0 |
| 120 | 4.79 | 0.71 | 19 | 0 | 0 | 0 | 0 | 6 | 612 | | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 130 | 5.05 | 0.22 | 20 | 0 | 0 | 0 | 0 | 0 | - 19 | | 1 | 0 |
| 140 | 5.63 | 1.01 | 19 | 0 | 0 | 0 | 0 | 0 | d 13 | | 1 | 4 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 150 | 6.17 | 1.24 | 24 | 0 | 0 | 0 | 0 | 0 | - 12 | | 0 | 8 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 160 | 6.59 | 0.93 | 27 | 0 | 0 | 0 | 0 | 0 | 06 | | 1 | 18 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 170 | 6.77 | 0.92 | 31 | 0 | 0 | 0 | 0 | 0 | 0 | 5 | 1 | 22 | 2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 180 | 7.03 | 0.32 | 30 | 0 | 0 | 0 | 0 | 0 | 0 | | 1 | 27 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 190 | 7.04 | 0.92 | 28 | 0 | 0 | 0 | 0 | 0 | - 3 | 3 | 1 | 17 | 6 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 200 | 7.03 | 1.05 | 29 | 0 | 0 | 0 | 0 | 0 | - 4 | | 1 | 16 | 6 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 210 | 7.27 | 0.78 | 30 | 0 | 0 | 0 | 0 | 0 | - 1 | , | 1 | 19 | 7 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 220 | 7.45 | 0.87 | 29 | 0 | 0 | 0 | 0 | 0 | - 1 | , | 1 | 14. | 10 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 230 | 7.74 | 0.94 | 27 | 0 | 0 | 0 | 0 | 0 | 0 | | 0 | 13 | 10 | 3 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 240 | 7.92 | 0.88 | 24 | 0 | 0 | 0 | 0 | 0 | 0 | | 0 | 7 | 14 | 2 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 250 | 8.95 | 1.16 | 21 | 0 | 0 | 0 | 0 | 0 | 0 | | 0 | 2 | 5 | 9 | 2 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 260 | 8.35 | 1.06 | 17 | 0 | 0 | 0 | 0 | 0 | 0 | | 0 | 4 | 5 | 7 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 270 | 9.89 | 2.56 | 19 | 0 | 0 | 0 | 0 | 0 | 0 | | 0 | 0 | 7 | 4 | 3 | 2 | 1 | 0 | 1 | 0 | 0 | 0 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 280 | 10.96 | 3.29 | 24 | 0 | 0 | 0 | 0 | 0 | 0 | | 0 | 1 | 1 | 11 | 2 | 1 | 1 | 1 | 4 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
| 290 | 13.57 | 3.69 | 23 | 0 | 0 | 0 | 0 | 0 | 0 | | 0 | 0 | 1 | 4 | 0 | 1 | 3 | 3 | 4 | 2 | 0 | 1 | 0 | 1 | 3 | 0 | 0 | 0 | 0 | 0 | 0 |
| 300 | 12.96 | 3.65 | 28 | 0 | 0 | 0 | 0 | 0 | 0 | | 0 | 0 | 1 | 6 | 3 | 2 | 1 | 4 | 2 | 1 | 2 | 2 | 1 | 2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
| 310 | 14.17 | 4.06 | 24 | 0 | 0 | 0 | 0 | 0 | 0 | | 0 | 1 | 1 | 1 | 2 | 2 | 1 | 2 | 3 | 3 | 2 | 1 | 2 | 0 | 0 | 2 | 1 | 0 | 0 | 0 | 0 |
| 320 | 14.95 | 3.03 | 22 | 0 | 0 | 0 | 0 | 0 | 0 | | 0 | 0 | 0 | 1 | 0 | 2 | 1 | 1 | 5 | 6 | 0 | 2 | , | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 |
| 330 | 17.09 | 3.75 | 23 | 0 | 0 | 0 | 0 | 0 | 0 | | 0 | 0 | 0 | 0 | 0 | 1 | 4 | 0 | 2 | 2 | 1 | 1 | 2 | 1 | 3 | 4 | 2 | 0 | 0 | 0 | 0 |
| 340 | 17.05 | 3.58 | 19 | 0 | 0 | 0 | 0 | 0 | 0 | | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 1 | 3 | 1 | 3 | 2 | 0 | 1 | 1 | 2 | 2 | 1 | 0 | 0 | 0 |
| 350 | 16.47 | 3.53 | 19 | 0 | 0 | 0 | 0 | 0 | 0 | | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 4 | 1 | 2 | 1 | 0 | 1 | 4 | 2 | 1 | 0 | 1 | 0 | 0 | 0 |
| 360 | 18.67 | 4.48 | 15 | 0 | 0 | 0 | 0 | 0 | 0 | | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 4 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 3 | 0 | 2 | 1 | 0 |
| 370 | 19.36 | 3.32 | 11 | 0 | 0 | 0 | 0 | 0 | 0 | . | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 4 | 1 | 0 | 2 | 2 | 0 | 0 | 0 |
| 380 | 18.82 | 4.58 | 11 | 0 | 0 | 0 | 0 | 0 | 0 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 2 | 0 | 1 | 0 | 1 |
| 390 | 18.50 | 3.70 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
| 400 | 24.00 | 0:00 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
| 410 | 17.00 | 0.00 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 420 | 31.00 | 0.00 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | | 0 | 1 |
| - 430 | 24.50 | 0.00 | | 0.0 | | 0.0 | | 0.0 | | | . 0 | | 0.0 | | 0.0 | | 0.0 | | 0.0 | | 0.0 | | 0.5 | | 0.0 | | 0.0 | | 0.0 | | 0.5 |
| | | | 1.0 | | 0.0 | | 0.0 | | 0.0 | | | 0.0 | | 0.0 | | 0.0 | | 0.0 | | 0.0 | | 0.0 | | 0.0 | | 0.0 | | 0.0 | | 0.0 | |
| 440 | 18.00 | 0.00 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| total | 9.92 | 5.04 | 646.5 | 0.0 | 0.0 | 1.5 | 6.0 | 16.0 | | 10.0 | | | 85.0 | 57.0 | 12.0 | | 15.0 | 19.0 | 31.0 | 19.0 | 10.0 | | 12.5 | 16 | 14.0 | | 14.0 | | 4.0 | | 2.5 |
| | | | | | | | | | 82.0 | | | 4.0 | | | | 19.0 | | | | | | 12.0 | | 16.0 | | 9.0 | | 5.0 | | 1.0 | |

Table E-5.--Age-I ength keys for rock sole from age data collected during the 1988 bottom traw survey.
Male key

| LEN GTH | $\begin{aligned} & \text { AVG } \\ & \text { AGE } \end{aligned}$ | $\begin{aligned} & \text { STD. } \\ & \text { OEV. } \end{aligned}$ | FREQUENCY | $\begin{array}{r} \text { AGE } \\ 0 \end{array}$ | $\begin{array}{r} \text { (IN } \\ 1 \end{array}$ | $\begin{gathered} \text { YEAR } \\ 7 \end{gathered}$ | S) | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | | $26+$ |
| :---: |
| 80 | 2.00 | 0.00 | 1 | 0 | 0 | 1 | 0 |
| 90 | 2.33 | 0.58 | 3 | 0 | 0 | 2 | 1 | 0 |
| 100 | 2.67 | 0.58 | 3 | 0 | 0 | 1 | 2 | 0 |
| 110 | 2.67 | 0.58 | 3 | 0 | 0 | 1 | 2 | 0 |
| 120 | 2.67 | 0.58 | 3 | 0 | 0 | 1 | 2 | 0 |
| 130 | 2.75 | 0.96 | 4 | 0 | 0 | 2 | 1 | 1 | 0 |
| 140 | 3.50 | 0.58 | 4 | 0 | 0 | 0 | 2 | 2 | 0 |
| 150 | 4.00 | 0.63 | 6 | 0 | 0 | 0 | 1 | 4 | 1 | 0 |
| 160 | 3.33 | 0.58 | 3 | 0 | 0 | 0 | 2 | 1 | 0 |
| 170 | 4.00 | 0.00 | 3 | 0 | 0 | 0 | 0 | 3 | 0 |
| 180 | 4.00 | 0.00 | 6 | 0 | 0 | 0 | 0 | 6 | 0 |
| 190 | 4.00 | 0.00 | 1 | 0 | 0 | 0 | 0 | 1 | 0 |
| 200 | 4.60 | 0.55 | 5 | 0 | 0 | 0 | 0 | 2 | 3 | 0 |
| 210 | 5.00 | 0.00 | 4 | 0 | 0 | 0 | 0 | 0 | 4 | 0 |
| 220 | 5.00 | 0.71 | 5 | 0 | 0 | 0 | 0 | 1 | 3 | 1 | 0 |
| 230 | 5.67 | 0.58 | 3 | 0 | 0 | 0 | 0 | 0 | 1 | 2 | 0 |
| 240 | 6.00 | 1.00 | 3 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 250 | 5.71 | 0.76 | 7 | 0 | 0 | 0 | 0 | 0 | 3 | 3 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 260 | 6.00 | 0.82 | 4 | 0 | 0 | 0 | 0 | 0 | 1 | 2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 270 | 6.25 | 0.50 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 280 | 6.40 | 0.89 | 5 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 290 | 7.80 | 1.55 | 10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 6 | 3 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 300 | 8.13 | 2.30 | 8 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 3 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 310 | 8.00 | 0.76 | 8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 4 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 320 | 9.86 | 4.34 | 7 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 2 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 330 | 11.00 | 6.24 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 340 | 13.25 | 3.59 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 350 | 11.50 | 3.54 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| TOTAL | 6.07 | 3.16 | 122 | 0 | 0 | 8 | 13 | 21 | 18 | 17 | 19 | 8 | 7 | 1 | 3 | 2 | 0 | 2 | 0 | 0 | 0 | 2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

Table E-5.--(Cont.).
Female key

| LEN GTH | AVG
 AGE | $\begin{aligned} & \text { STD. } \\ & \text { DEV. } \end{aligned}$ | FREQUENCY | $\begin{array}{r} \text { AGE } \\ 0 \end{array}$ | $\begin{array}{r} \text { IN } \\ 1 \end{array}$ | $\begin{gathered} \text { YEARS } \\ 2 \end{gathered}$ | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | | $26+$ |
| :---: |
| 70 | 2.00 | 0.00 | 1 | 0 | 0 | 1 | 0 |
| 80 | 2.00 | 0.00 | 3 | 0 | 0 | 3 | 0 |
| 90 | 2.00 | 0.00 | 3 | 0 | 0 | 3 | 0 |
| 100 | 2.75 | 0.50 | 4 | 0 | 0 | 1 | 3 | 0 |
| 110 | 3.00 | 0.00 | 6 | 0 | 0 | 0 | 6 | 0 |
| 120 | 2.67 | 0.58 | 3 | 0 | 0 | 1 | 2 | 0 |
| 130 | 3.40 | 0.55 | 5 | 0 | 0 | 0 | 3 | 2 | 0 |
| 140 | 3.00 | 0.71 | 5 | 0 | 0 | 1 | 3 | 1 | 0 |
| 150 | 3.40 | 0.89 | 5 | 0 | 0 | 0 | 4 | 0 | 1 | 0 |
| 160 | 4.00 | 0.63 | 6 | 0 | 0 | 0 | 1 | 4 | 1 | 0 |
| 170 | 4.20 | 0.45 | 5 | 0 | 0 | 0 | 0 | 4 | 1 | 0 |
| 180 | 4.17 | 0.75 | 6 | 0 | 0 | 0 | 1 | 3 | 2 | 0 |
| 190 | 4.40 | 0.55 | 5 | 0 | 0 | 0 | 0 | 3 | 2 | 0 |
| 200 | 4.71 | 0.49 | 7 | 0 | 0 | 0 | 0 | 2 | 5 | 0 |
| 210 | 4.50 | 1.00 | 4 | 0 | 0 | 0 | 1 | 0 | 3 | 0 |
| 220 | 5.33 | 0.52 | 6 | 0 | 0 | 0 | 0 | 0 | 4 | 2 | 0 |
| 230 | 5.20 | 0.45 | 5 | 0 | 0 | 0 | 0 | 0 | 4 | 1 | 0 |
| 240 | 5.00 | 0.00 | 4 | 0 | 0 | 0 | 0 | 0 | 4 | 0 |
| 250 | 5.50 | 0.84 | 6 | 0 | 0 | 0 | 0 | 0 | 4 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 260 | 5.29 | 0.49 | 7 | 0 | 0 | 0 | 0 | 0 | 5 | 2 | 0 |
| 270 | 5.80 | 0.84 | 5 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 280 | 7.25 | 1.26 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 2 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 290 | 6.50 | 1.73 | 4 | 0 | 0 | 0 | 0 | 0 | 1 | 2 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 300 | 6.86 | 0.38 | 7 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 310 | 7.67 | 1.00 | 9 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 5 | 3 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 320 | 7.89 | 0.60 | 9 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 6 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 330 | 8.11 | 0.60 | 9 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 6 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 340 | 8.33 | 1.87 | 9 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 4 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 350 | 10.63 | 3.58 | 8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 2 | 1 | 0 | 2 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 360 | 10.11 | 1.96 | 9 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | 2 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 370 | 10.44 | 2.01 | 9 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 3 | 1 | 2 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 380 | 12.17 | 3.16 | 12 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 1 | 4 | 2 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
| 390 | 14.25 | 3.33 | 8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 400 | 13.44 | 3.43 | 9 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 2 | 0 | 2 | 2 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 410 | 14.22 | 3.83 | 9 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 2 | 4 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
| 420 | 14.83 | 4.62 | 6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
| 430 | 15.00 | 4.24 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 440 | 15.00 | 4.24 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 450 | 19.00 | 1.41 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
| TOTAL | 7.79 | 4.41 | 228 | 0 | 0 | 10 | 24 | 19 | 39 | 12 | 22 | 25 | 14 | 6 | 15 | 8 | 11 | 7 | 0 | 1 | 2 | 7 | 2 | 2 | 0 | 0 | 2 | 0 | 0 | 0 |

Table E-5.-.(Cont.).
Sexes combined key

| LEN GTH | $\begin{aligned} & \text { AVG } \\ & \text { AGE } \end{aligned}$ | $\begin{aligned} & \text { STD. } \\ & \text { DEV. } \end{aligned}$ | FREQUENCY | $\begin{array}{r} \text { AGE } \\ 0 \end{array}$ | $\begin{gathered} \text { CN } \\ 1 \end{gathered}$ | $\begin{gathered} \text { YEARS } \\ 2 \end{gathered}$ | | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | | $26+$ |
| :---: |
| 70 | 2.00 | 0.00 | 1 | 0 | 0 | 1 | 0 |
| 80 | 2.00 | 0.00 | 4 | 0 | 0 | 4 | 0 |
| 90 | 2.17 | 0.41 | 6 | 0 | 0 | 5 | 1 | 0 |
| 100 | 2.71 | 0.49 | 7 | 0 | 0 | 2 | 5 | 0 |
| 110 | 2.89 | 0.33 | 9 | 0 | 0 | 1 | 8 | 0 |
| 120 | 2.67 | 0.52 | 6 | 0 | 0 | 2 | 4 | 0 |
| 130 | 3.11 | 0.78 | 9 | 0 | 0 | 2 | 4 | 3 | 0 |
| 140 | 3.22 | 0.67 | 9 | 0 | 0 | 1 | 5 | 3 | 0 |
| 150 | 3.73 | 0.79 | 11 | 0 | 0 | 0 | 5 | 4 | 2 | 0 |
| 160 | 3.78 | 0.67 | 9 | 0 | 0 | 0 | 3 | 5 | 1 | 0 |
| 170 | 4.13 | 0.35 | 8 | 0 | 0 | 0 | 0 | 7 | 1 | 0 |
| 180 | 4.08 | 0.51 | 12 | 0 | 0 | 0 | 1 | 9 | 2 | 0 |
| 190 | 4.33 | 0.52 | 6 | 0 | 0 | 0 | 0 | 4 | 2 | 0 |
| 200 | 4.67 | 0.49 | 12 | 0 | 0 | 0 | 0 | 4 | 8 | 0 |
| 210 | 4.75 | 0.71 | 8 | 0 | 0 | 0 | 1 | 0 | 7 | 0 |
| 220 | 5.18 | 0.60 | 11 | 0 | 0 | 0 | 0 | 1 | 7 | 3 | 0 |
| 230 | 5.38 | 0.52 | 8 | 0 | 0 | 0 | 0 | 0 | 5 | 3 | 0 |
| 240 | 5.43 | 0.79 | 7 | 0 | 0 | 0 | 0 | 0 | 5 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 250 | 5.62 | 0.77 | 13 | 0 | 0 | 0 | 0 | 0 | 7 | 4 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 260 | 5.55 | 0.69 | 11 | 0 | 0 | 0 | 0 | 0 | 6 | 4 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 270 | 6.00 | 0.71 | 9 | 0 | 0 | 0 | 0 | 0 | 2 | 5 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 280 | 6.78 | 1.09 | 9 | 0 | 0 | 0 | 0 | 0 | 1 | 2 | 5 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 290 | 7.43 | 1.65 | 14 | 0 | 0 | 0 | 0 | 0 | 1 | 2 | 6 | 3 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 300 | 7.53 | 1.77 | 15 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 9 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 310 | 7.82 | 0.88 | 17 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 7 | 7 | 2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 320 | 8.75 | 2.96 | 16 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 3 | 7 | 3 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 330 | 8.83 | 3.01 | 12 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 6 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 340 | 9.85 | 3.34 | 13 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 4 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 350 | 10.80 | 3.39 | 10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 2 | 2 | 0 | 2 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 360 | 10.11 | 1.96 | 9 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | 2 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 370 | 10.44 | 2.01 | 9 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 3 | 1 | 2 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 380 | 12.17 | 3.16 | 12 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 1 | 4 | 2 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
| 390 | 14.25 | 3.33 | 8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 400 | 13.44 | 3.43 | 9 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 2 | 0 | 2 | 2 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 410 | 14.22 | 3.83 | 9 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 2 | 4 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
| 420 | 14.83 | 4.62 | 6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
| 430 | 15.00 | 4.24 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 440 | 15.00 | 4.24 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 450 | 19.00 | 1.41 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
| TOTAL | 7.19 | 4.10 | 350 | 0 | 0 | 18 | 37 | 40 | 57 | 29 | 41 | 33 | 21 | 7 | 18 | 10 | 11 | 9 | 0 | 1 | 2 | 9 | 3 | 2 | 0 | 0 | 2 | 0 | 0 | 0 |

Population Estimates by Age for Principal Species of Fish

Appendix F presents population estimates and mean lengths at age by sex and for combined sexes of fish having age data available from the 1988 bottom trawl and midwater acoustic trawl surveys.

Population estimates listed as "below minimum key length", "above maximum key length", and "between key length" are for fish lengths lacking age observations. Asterisks denote population estimates for which interpolation was used to assign numbers to an age for a fish length lacking age observations.

List of Tables

Table

Page

$$
\begin{aligned}
& \text { F-l. Population number estimates by age for walleye } \\
& \text { pollock derived from age and length data collected } \\
& \text { on the continental shelf during the } 1988 \text { bottom } \\
& \text { trawl survey... } 342
\end{aligned}
$$

F-2. Population number estimates by age for walleye pollock derived from age and length data collected during the slope portion of the 1988 bottom trawl survey 346
F-3. Population number estimates by age for walleye pollock from age and length data collected during the 1988 midwater trawl survey 350
F-4. Population number estimates by age for Pacific cod from age and length data collected during the 1988 bottom trawl survey 351
F-5. Population number estimates by age for yellowfin sole from age and length data collected during the 1988 bottom trawl survey 355
F-6. Population number estimates by age for rock sole from age and length data collected during the 1988 bottom trawl survey 359

Table F-I .--Popul ation number estimates by age for walleye pollock derived from age (years) and Iength data collected on the continental shelf during the 1988 bottomtraw survey.

Mal es

| Age Class | Number | Proportion | Cumulative Number | Cumulative Proportion | $\begin{array}{r} \text { Mean } \\ \text { Length } \end{array}$ | Std. Dev. of Length |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Below Minimum | | | | | | |
| Key Length | 939,480 | 0.0001 | 939,480 | 0.0001 | 84.16 | 8.15 |
| 1 | 117,775,920 | 0.0183 | 118,715,400 | 0.0184 | 149.41 | 21.11 |
| 2 | 277,936,916 | 0.0431 | 396,652,316 | 0.0615 | 254.18 | 39.53 |
| 3 | 683,794,400 | 0.1061 | 1,080,446,717 | 0.1676 | 365.69 | 36.25 |
| 4 | 1,261,186,288 | 0.1956 | 2,341,633,005 | 0.3632 | 383.54 | 38.14 |
| 5 | 554,163,219 | 0.0860 | 2,895,796,224 | 0.4492 | 413.25 | 33.58 |
| 6 | 1,719,060,629 | 0.2666 | 4,614,856,853 | 0.7158 | 433.32 | 29.10 |
| 7 | 540,248,255 | 0.0838 | 5,155,105,108 | 0.7996 | 456.31 | 35.51 |
| 8 | 466,792,755 | 0.0724 | 5,621,897,863 | 0.8720 | 490.98 | 38.12 |
| 9 | 222,056,274 | 0.0344 | 5,843,954,137 | 0.9064 | 516.91 | 28.88 |
| * 10 | 523,823,226 | 0.0812 | 6,367,777,363 | 0.9877 | 525.94 | 43.06 |
| * 11 | 26,582,509 | 0.0041 | 6,394,359,873 | 0.9918 | 583.89 | 50.56 |
| * 12 | 33,179,715 | 0.0051 | 6,427,539,588 | 0.9970 | 570.04 | 51.49 |
| 13 | 2,959,924 | 0.0005 | 6,430,499,512 | 0.9974 | 560.00 | 0.00 |
| 14 | 12,878,456 | 0.0020 | 6,443,377,968 | 0.9994 | 516.36 | 68.25 |
| 15 | 1,901,989 | 0.0003 | 6,445,279,956 | 0.9997 | 610.00 | 0.00 |
| Above Maximum | | | | | | |
| Key Length | 1,879,146 | 0.0003 | 6,447,159,102 | 1.0000 | 735.39 | 13.21 |
| Total | 6,447,159,102 | 1.0000 | 6,447,159,102 | 1.0000 | 419.92 | 80.09 |

Table F－I．－－（Cont．）．
Fenal es

| Age Class | Number | Proportion | Cumulative Number | Cumulative Proportion | Length | Std．Dev． of Length |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Below Minimum | | | | | | |
| Key Length | 590，005 | 0.0001 | 590，005 | 0.0001 | 86.91 | 4.62 |
| ＊ 1 | 91，543，831 | 0.0159 | 92，133，837 | 0.0160 | 152.64 | 20.96 |
| ＊ 2 | 182，504，923 | 0.0318 | 274，638，759 | 0.0478 | 245.76 | 39.06 |
| 3 | 518，239，567 | 0.0903 | 792，878，326 | 0.1381 | 360.27 | 56.61 |
| 4 | 1，037，053，163 | 0.1806 | 1，829，931，489 | 0.3187 | 389.62 | 34.42 |
| 5 | 458，296，901 | 0.0798 | 2，288，228，390 | 0.3986 | 428.58 | 38.57 |
| 6 | 1，609，033，656 | 0.2803 | 3，897，262，045 | 0.6788 | 444.55 | 34.59 |
| 7 | 463，421，308 | 0.0807 | 4，360，683，353 | 0.7595 | 464.48 | 38.18 |
| 8 | 324，884，608 | 0.0566 | 4，685，567，962 | 0.8161 | 505.02 | 40.61 |
| 9 | 249，742，562 | 0.0435 | 4，935，310，523 | 0.8596 | 517.18 | 38.35 |
| ＊ 10 | 650，580，198 | 0.1133 | 5，585，890，721 | 0.9729 | 565.77 | 51.79 |
| ＊ 11 | 92，893，197 | 0.0162 | 5，678，783，918 | 0.9891 | 589.00 | 66.07 |
| 12 | 37，566，268 | 0.0065 | 5，716，350，186 | 0.9957 | 599.92 | 46.89 |
| 13 | 12，366，949 | 0.0022 | 5，728，717，135 | 0.9978 | 673.38 | 38.57 |
| 14 | 4，114，226 | 0.0007 | 5，732，831，362 | 0.9985 | 580.00 | 0.00 |
| 15 | 746，679 | 0.0001 | 5，733，578，040 | 0.9987 | 700.00 | 0.00 |
| 16 | 4，426，407 | 0.0008 | 5，738，004，447 | 0.9994 | 628.79 | 21.22 |
| 18 | 2，129，205 | 0.0004 | 5，740，133，652 | 0.9998 | 650.00 | 0.00 |
| Above Maximum Key Length | 1，137，557 | 0.0002 | 5，741，271，209 | 1.0000 | 821.34 | 10.35 |
| Total | 5，741，271，208 | 1.0000 | 5，741，271，209 | 1.0000 | 440.93 | 91.30 |

Table F-I.--(Cont.).
Unsexed

| Age Class | Number | Proportion | Cumulative Number | Cumulative Proportion | Mean Length | Std. Dev. of Length |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Below Minimum | | | | | | |
| Key Length | 16,653,281 | 0.0085 | 16,653,281 | 0.0085 | 87.96 | 4.68 |
| 1 | 1,800,716,164 | 0.9224 | 1,817,369,445 | 0.9309 | 137.10 | 18.79 |
| 2 | 132,378,151 | 0.0678 | 1,949,747,596 | 0.9987 | 192.69 | 20.20 |
| 3 | 2,551,586 | 0.0013 | 1,952,299,182 | 1.0000 | 231.19 | 4.74 |
| Total | 1,952,299,182 | 1.0000 | 1,952,299,182 | 1.0000 | 140.58 | 24.15 |

Table F-I.--(Cont.).
Mal es, Fenal es, and Unsexed

| Age Class | Number | Proportion | Cumulative Number | Cumulative Proportion | Mean Length | Std. Dev. of Length |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Below Minimum | | | | | | |
| Key Length | 18,182,766 | 0.0013 | 18,182,766 | 0.0013 | 87.73 | 4.99 |
| * 1 | 2,010,035,915 | 0.1421 | 2,028,218,681 | 0.1434 | 138.53 | 19.50 |
| * 2 | 592,819,990 | 0.0419 | 2,621,038,671 | 0.1854 | 237.86 | 43.51 |
| 3 | 1,204,585,553 | 0.0852 | 3,825,624,224 | 0.2705 | 363.07 | 46.57 |
| 4 | 2,298,239,451 | 0.1625 | 6,123,863,675 | 0.4331 | 386.28 | 36.64 |
| 5 | 1,012,460,120 | 0.0716 | 7,136,323,795 | 0.5047 | 420.19 | 36.73 |
| 6 | 3,328,094,285 | 0.2354 | 10,464,418,080 | 0.7400 | 438.75 | 32.36 |
| 7 | 1,003,669,563 | 0.0710 | 11,468,087,643 | 0.8110 | 460.09 | 36.99 |
| 8 | 791,677,363 | 0.0560 | 12,259,765,006 | 0.8670 | 496.74 | 39.77 |
| 9 | 471,798,836 | 0.0334 | 12,731,563,843 | 0.9003 | 517.05 | 34.22 |
| * 10 | 1,174,403,424 | 0.0831 | 13,905,967,266 | 0.9834 | 548.00 | 52.01 |
| * 11 | 119,475,706 | 0.0084 | 14,025,442,973 | 0.9918 | 587.86 | 62.99 |
| * 12 | 70,745,983 | 0.0050 | 14,096,188,956 | 0.9969 | 585.90 | 51.31 |
| 13 | 15,326,873 | 0.0011 | 14,111,515,829 | 0.9979 | 651.49 | 56.60 |
| 14 | 16,992,682 | 0.0012 | 14,128,508,511 | 0.9991 | 531.77 | 65.38 |
| 15 | 2,648,667 | 0.0002 | 14,131,157,178 | 0.9993 | 635.37 | 40.49 |
| 16 | 4,426,407 | 0.0003 | 14,135,583,585 | 0.9996 | 628.79 | 21.22 |
| 18 | 2,129,205 | 0.0002 | 14,137,712,790 | 0.9998 | 650.00 | 0.00 |
| Above Maximum Key Length | 3,016,703 | 0.0002 | 14,140,729,492 | 1.0000 | 767.80 | 43.41 |
| Total | 14,140,729,492 | 1.0000 | 14,140,729,492 | 1.0000 | 389.88 | 128.22 |

Table F-2.--Popul ation number estimates by age for walleye pollock derived from age (years) and length data collected during the slope portion of the 1988 bottom traw survey.

Mal es

| Age Class | Number | Proportion | Cumulative Number | Cumulative Proportion | Mean Length | Std. Dev. of Length |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3 | 11,194,004 | 0.1286 | 11,194,004 | 0.1286 | 412.78 | 23.77 |
| 4 | 9,055,154 | 0.1040 | 20,249,158 | 0.2327 | 429.52 | 19.38 |
| 5 | 8,880,503 | 0.1020 | 29,129,661 | 0.3347 | 441.24 | 18.75 |
| 6 | 33,346,784 | 0.3832 | 62,476,445 | 0.7179 | 461.54 | 27.76 |
| 7 | 5,886,480 | 0.0676 | 68,362,925 | 0.7855 | 480.95 | 30.23 |
| 8 | 1,371,323 | 0.0158 | 69,734,248 | 0.8013 | 521.24 | 12.52 |
| 9 | 4,048,810 | 0.0465 | 73,783,059 | 0.8478 | 487.43 | 22.73 |
| 10 | 12,954,616 | 0.1489 | 86,737,675 | 0.9967 | 501.33 | 23.22 |
| 11 | 179,682 | 0.0021 | 86,917,357 | 0.9987 | 580.00 | 0.00 |
| Above Maximum Key Length | 110,852 | 0.0013 | 87,028,209 | 1.0000 | 612.34 | 16.40 |
| Total | 87,028,209 | 1.0000 | 87,028,209 | 1.0000 | 459.68 | 38.33 |

Table F-2.--(Cont.).

Fenal es

| Age Class | Number | Proportion | Cumulative Number | Cumulative Proportion | Mean Length | Std. Dev. of Length |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Below Minimum | | | | | | |
| Key Length | 125,927 | 0.0014 | 125,927 | 0.0014 | 334.86 | 33.21 |
| * 3 | 8,649,176 | 0.0992 | 8,775,102 | 0.1007 | 417.56 | 17.53 |
| * 4 | 10,432,166 | 0.1197 | 19,207,268 | 0.2203 | 427.98 | 21.48 |
| * 5 | 4,607,536 | 0.0529 | 23,814,804 | 0.2732 | 431.90 | 28.95 |
| 6 | 36,182,572 | 0.4150 | 59,997,376 | 0.6882 | 468.55 | 23.69 |
| 7 | 3,771,704 | 0.0433 | 63,775,079 | 0.7315 | 503.64 | 12.54 |
| 8 | 5,005,991 | 0.0574 | 68,781,070 | 0.7890 | 522.13 | 10.33 |
| 9 | 1,779,086 | 0.0204 | 70,560,156 | 0.8094 | 517.76 | 27.65 |
| 10 | 13,157,814 | 0.1509 | 83,717,970 | 0.9603 | 528.51 | 31.10 |
| * 11 | 887,612 | 0.0102 | 84,605,582 | 0.9705 | 556.03 | 27.15 |
| 12 | 21,454 | 0.0002 | 84,627,036 | 0.9707 | 641.19 | 32.16 |
| * 13 | 1,055,391 | 0.0121 | 85,682,427 | 0.9828 | 548.48 | 32.80 |
| 14 | 141,423 | 0.0016 | 85,823,850 | 0.9845 | 580.00 | 0.00 |
| 15 | 1,303,267 | 0.0149 | 87,127,117 | 0.9994 | 520.00 | 0.00 |
| Between Key | | | | | | |
| Length | 50,613 | 0.0006 | 87,177,730 | 1.0000 | 667.10 | 8.46 |
| Above Maximum | | | | | | |
| Key Length | 1,610 | 0.0000 | 87,179,340 | 1.0000 | 700.00 | 0.00 |
| Total | 87,179,340 | 1.0000 | 87,179,340 | 1.0000 | 474.13 | 46.23 |

Table F-2.--(Cont.).
Unsexed

| Age Class | Number | Proportion | Cumulative
 Number | Cumulative
 Proportion | Mean
 Length | Std. Dev.
 of Length |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Below Minimum
 Key Length | 102,317 | 1.0000 | 102,317 | 1.0000 | 141.43 | 30.43 |
| Total | 102,317 | 1.0000 | 102,317 | 1.0000 | 141.43 | 30.43 |

Table F-2.--(Cont.).
Mal es, Fenal es, and Unsexed

| Age Class | Number | Proportion | Cumulative Number | Cumulative Proportion | Mean Length | Std. Dev. of Length |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Below Minimum | | | | | | |
| Key Length | 228,244 | 0.0013 | 228,244 | 0.0013 | 248.15 | 101.38 |
| * 3 | 19,843,180 | 0.1138 | 20,071,424 | 0.1151 | 414.86 | 21.41 |
| * 4 | 19,487, 320 | 0.1118 | 39,558,744 | 0.2269 | 428.70 | 20.54 |
| * 5 | 13,488, 038 | 0.0774 | 53,046,782 | 0.3043 | 438.05 | 23.18 |
| 6 | 69,529,356 | 0.3989 | 122,576,138 | 0.7032 | 465.19 | 25.96 |
| 7 | 9,664,184 | 0.0554 | 132,240,322 | 0.7587 | 489.82 | 27.22 |
| 8 | 6,377,314 | 0.0366 | 138,617,636 | 0.7952 | 521.94 | 10.85 |
| 9 | 5,827,896 | 0.0334 | 144,445,532 | 0.8287 | 496.69 | 28.06 |
| 10 | 26,112,430 | 0.1498 | 170,557,962 | 0.9785 | 515.02 | 30.65 |
| * 11 | 1,067,293 | 0.0061 | 171,625,255 | 0.9846 | 560.07 | 26.33 |
| 12 | 21,454 | 0.0001 | 171,646,710 | 0.9847 | 641.19 | 32.16 |
| * 13 | 1,055,391 | 0.0061 | 172,702,101 | 0.9908 | 548.48 | 32.80 |
| 14 | 141,423 | 0.0008 | 172,843,524 | 0.9916 | 580.00 | 0.00 |
| 15 | 1,303,267 | 0.0075 | 174,146,791 | 0.9991 | 520.00 | 0.00 |
| Between Key Lengths | 50,613 | 0.0003 | 174,197,404 | 0.9994 | 667.10 | 8.46 |
| Above Maximum Key Length | 112,462 | 0.0006 | 174,309,865 | 1.0000 | 613.59 | 19.32 |
| Total | 174,309,865 | 1.0000 | 174,309,865 | 1.0000 | 466.72 | 43.79 |

Table F-3. --Population number estimates by age for walleye pollock from age and length data collected during the 1988 midwater trawl survey'.

Males, Females, and Unsexed

| Age
 Class | Number | Proportion | Cumulative
 Number | Cumulative
 Proportion |
| :--- | ---: | ---: | ---: | ---: |
| | $10,854,740$ | 0.0009 | $10,854,740$ | 0.0009 |
| 1 | $1,111,930,892$ | 0.0905 | $1,122,785,632$ | 0.0913 |
| 2 | $3,585,686,686$ | 0.2917 | $4,708,472,318$ | 0.3831 |
| 3 | $3,864,336,402$ | 0.3144 | $8,572,808,719$ | 0.6974 |
| 4 | $739,410,446$ | 0.0602 | $9,312,219,165$ | 0.7576 |
| 5 | $1,881,677,044$ | 0.1531 | $11,193,896,209$ | 0.9107 |
| 6 | $403,364,650$ | 0.0328 | $11,597,260,859$ | 0.9435 |
| 7 | $151,347,569$ | 0.0123 | $11,748,608,427$ | 0.9558 |
| 8 | $129,528,647$ | 0.0105 | $11,878,137,074$ | 0.9663 |
| 9 | $254,519,025$ | 0.0207 | $12,132,656,099$ | 0.9871 |
| 10 | $50,039,069$ | 0.0041 | $12,182,695,168$ | 0.9911 |
| 11 | $35,789,670$ | 0.0029 | $12,218,484,838$ | 0.9940 |
| 12 | $7,014,044$ | 0.0006 | $12,225,498,882$ | 0.9946 |
| 13 | $20,881,103$ | 0.0017 | $12,246,379,985$ | 0.9963 |
| 14 | $15,318,066$ | 0.0012 | $12,261,698,051$ | 0.9976 |
| 15 | $28,104,529$ | 0.0023 | $12,289,802,580$ | 0.9998 |
| 16 | $2,002,864$ | 0.0002 | $12,291,805,444$ | 1.0000 |
| 17 | | | 1.0000 | $12,291,805,444$ |
| | | | | 1.0000 |
| TOTAL | $12,291,805,444$ | | | |
| | | | | |

[^18]Table F-4.-- Popul ation number estinates by age for Pacific cod from age (years) and Iength data collected during the 1988 bottomtraw survey.

Mal es

| Age Class | Number | Proportion | Cumulative Number | Cumulative Proportion | Mean Length | Std. Dev. of Length |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Below Minimum | | | | | | |
| Key Length | 2,772,216 | 0.0103 | 2,772,216 | 0.0103 | 141.96 | 9.15 |
| * 1 | 18,284,750 | 0.0677 | 21,056,965 | 0.0780 | 242.61 | 44.15 |
| * 2 | 27,549,162 | 0.1021 | 48,606,128 | 0.1801 | 332.62 | 45.35 |
| 3 | 53,175,399 | 0.1970 | 101,781,527 | 0.3770 | 395.21 | 45.67 |
| 4 | 66,721,356 | 0.2472 | 168,502,883 | 0.6242 | 490.83 | 38.95 |
| 5 | 50,733,701 | 0.1879 | 219,236,585 | 0.8121 | 576.09 | 37.23 |
| 6 | 18,742,191 | 0.0694 | 237,978,776 | 0.8815 | 644.69 | 36.22 |
| * 7 | 10,996, 497 | 0.0407 | 248,975,273 | 0.9223 | 699.41 | 50.12 |
| * 8 | 5,793,464 | 0.0215 | 254,768,737 | 0.9437 | 744.94 | 30.67 |
| * 9 | 3,549,270 | 0.0131 | 258,318,007 | 0.9569 | 740.03 | 33.10 |
| 10 | 2,311,610 | 0.0086 | 260,629,617 | 0.9654 | 785.91 | 29.22 |
| +11 | 3,846,082 | 0.0142 | 264,475,699 | 0.9797 | 795.19 | 45.57 |
| * 12 | 1,093,555 | 0.0041 | 265,569,254 | 0.9837 | 755.11 | 16.74 |
| Between Key Length | 4,214,731 | 0.0156 | 269,783,985 | 0.9994 | 858.79 | 25.32 |
| Above Maximum Key Length | 172,663 | 0.0006 | 269,956,648 | 1.0000 | 973.27 | 21.69 |
| Total | 269,956,648 | 1.0000 | 269,956,648 | 1.0000 | 493.37 | 151.76 |

Table F-4.--(Cont.).
Fenal es

| Age Class | Number | Proportion | Cumulative Number | Cumulative Proportion | Mean Length | Std. Dev. of Length |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Below Minimum | | | | | | |
| Key Length | 229,386 | 0.0008 | 229,386 | 0.0008 | 126.24 | 9.94 |
| * 1 | 12,973,236 | 0.0479 | 13,202,622 | 0.0488 | 242.64 | 33.48 |
| 2 | 36,827,494 | 0.1360 | 50,030,116 | 0.1847 | 348.30 | 49.35 |
| 3 | 56,088,142 | 0.2071 | 106,118,259 | 0.3919 | 407.88 | 59.01 |
| 4 | 58,325,198 | 0.2154 | 164,443,456 | 0.6072 | 502.15 | 45.89 |
| 5 | 47,571,355 | 0.1757 | 212,014,812 | 0.7829 | 586.92 | 35.91 |
| 6 | 16,501,465 | 0.0609 | 228,516,277 | 0.8438 | 633.36 | 55.26 |
| 7 | 11,864,527 | 0.0438 | 240,380,804 | 0.8877 | 697.40 | 43.19 |
| 8 | 9,068;441 | 0.0335 | 249,449,245 | 0.9211 | 745.68 | 35.92 |
| 9 | 6,130,264 | 0.0226 | 255,579,509 | 0.9438 | 770.10 | 28.87 |
| 10 | 2,238,281 | 0.0083 | 257,817,790 | 0.9521 | 795.59 | 27.24 |
| 11 | 3,153,938 | 0.0116 | 260,971,727 | 0.9637 | 824.19 | 27.78 |
| 12 | 523,315 | 0.0019 | 261,495,043 | 0.9656 | 840.00 | 0.00 |
| 13 | 320,869 | 0.0012 | 261,815,912 | 0.9668 | 780.00 | 0.00 |
| 14 | 725,093 | 0.0027 | 262,541,005 | 0.9695 | 820.00 | 0.00 |
| Between Key Length | 4,761,826 | 0.0176 | 267,302,831 | 0.9871 | 584.98 | 336.03 |
| Above Maximum Key Length | 3,499,410 | 0.0129 | 270,802,242 | 1.0000 | 959.99 | 47.61 |
| Total | 270,802,242 | 1.0000 | 270,802,242 | 1.0000 | 510.00 | 159.42 |

Table F-4.--(Cont.).
Unsexed

| Age Class | Number | Proportion | Cumulative Number | Cumulative Proportion | Mean | Std. Dev. of Length |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Below Minimum | | | | | | |
| Key Length | 1,991,699 | 0.4468 | 1,991,699 | 0.4468 | 113.05 | 18.49 |
| * 1 | 1,632,228 | 0.3661 | 3,623,927 | 0.8129 | 154.41 | 19.30 |
| 2 | 101,058 | 0.0227 | 3,724,985 | 0.8356 | 368.42 | 39.90 |
| 3 | 333,675 | 0.0749 | 4,058,660 | 0.9105 | 381.56 | 50.49 |
| 4 | 111,977 | 0.0251 | 4,170,637 | 0.9356 | 469.49 | 59.22 |
| 5 | 108,018 | 0.0242 | 4,278,655 | 0.9598 | 578.69 | 23.59 |
| 6 | 62,925 | 0.0141 | 4,341,580 | 0.9739 | 630.80 | 19.74 |
| 7 | 47,580 | 0.0107 | 4,389,160 | 0.9846 | 711.03 | 31.09 |
| 8 | 16,379 | 0.0037 | 4,405,539 | 0.9883 | 730.00 | 0.00 |
| 9 | 29,299 | 0.0066 | 4,434,838 | 0.9948 | 740.34 | 41.28 |
| 10 | 5,755 | 0.0013 | 4,440,593 | 0.9961 | 820.00 | 0.00 |
| 11 | 11,510 | 0.0026 | 4,452,102 | 0.9987 | 820.00 | 0.00 |
| 14 | 5,755 | 0.0013 | 4,457,857 | 1.0000 | 820.00 | 0.00 |
| Total | 4,457,857 | 1.0000 | 4,457,857 | 1.0000 | 198.05 | 153.40 |

Tabl e. F-4.-- (Cont.).
Mal es, Fenal es, and Unsexed

| Age Class | Number | Proportion | Cumulative Number | Cumulative Proportion | Mean Length | Std. Dev. of Length |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Below Minimum | | | | | | |
| Key Length | 4,993,301 | 0.0092 | 4,993,301 | 0.0092 | 129.71 | 19.55 |
| * 1 | 32,890,213 | 0.0603 | 37,883,514 | 0.0695 | 238.25 | 43.72 |
| * 2 | 64,477,715 | 0.1183 | 102,361,229 | 0.1877 | 341.63 | 48.31 |
| 3 | 109,597,217 | 0.2010 | 211,958,446 | 0.3888 | 401.65 | 53.32 |
| 4 | 125,158, 531 | 0.2296 | 337,116,977 | 0.6183 | 496.09 | 42.73 |
| 5 | 98,413,074 | 0.1805 | 435,530,051 | 0.7988 | 581.33 | 36.98 |
| 6 | 35, 306,582 | 0.0648 | 470,836,633 | 0.8636 | 639.37 | 46.44 |
| * 7 | 22,908,604 | 0.0420 | 493,745,237 | 0.9056 | 698.39 | 46.64 |
| * 8 | 14,878,284 | 0.0273 | 508,623,520 | 0.9329 | 745.38 | 33.96 |
| * 9 | 9,708,833 | 0.0178 | 518,332,354 | 0.9507 | 759.02 | 33.80 |
| 10 | 4,555,646 | 0.0084 | 522,888,000 | 0.9590 | 790.71 | 28.68 |
| +11 | 7,011,529 | 0.0129 | 529,899, 529 | 0.9719 | 808.27 | 41.16 |
| * 12 | 1,616,870 | 0.0030 | 531,516,399 | 0.9749 | 782.58 | 42.04 |
| 13 | 320;869 | 0.0006 | 531,837,268 | 0.9755 | 780.00 | 0.00 |
| 14 | 730,848 | 0.0013 | 532,568,116 | 0.9768 | 820.00 | 0.00 |
| Between Key Length | 8,976,557 | 0.0165 | 541,544,673 | 0.9933 | 713.54 | 280.84 |
| Above Maximum Key Length | 3,672,074 | 0.0067 | 545,216,747 | 1.0000 | 960.62 | 46.80 |
| Total | 545,216,747 | 1.0000 | 545,216,747 | 1.0000 | 499.21 | 158.23 |

Table F-5.-- Popul ation number estimates by age for yellowin sole from age (years) and length data collected during the 1988 bottomtraw survey.

Males

| Age Class | Number | Proportion | Cumulative Number | Cumulative Proportion | Mean Length | Std. Dev. of Length |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Below Minimum | | | | | | |
| Key Length | 381,613 | 0.0001 | 381,613 | 0.0001 | 80.00 | 0.00 |
| 3 | 2,396,090 | 0.0004 | 2,777,703 | 0.0005 | 93.06 | 4.61 |
| 4 | 17,972,996 | 0.0032 | 20,750,699 | 0.0038 | 114.72 | 6.10 |
| 5 | 517,776,235 | 0.0936 | 538,526,934 | 0.0974 | 161.79 | 27.00 |
| 6 | 64,328,144 | 0.0116 | 602,855,078 | 0.1090 | 186.49 | 26.47 |
| 7 | 1,562,359,057 | 0.2825 | 2,165,214,135 | 0.3914 | 191.66 | 28.39 |
| 8 | 748,003,779 | 0.1352 | 2,913,217,913 | 0.5267 | 229.15 | 25.85 |
| 9 | 587,097,521 | 0.1061 | 3,500,315,434 | 0.6328 | 258.51 | 30.52 |
| 10 | 102,535,028 | 0.0185 | 3,602,850,462 | 0.6514 | 278.44 | 17.86 |
| 11 | 227,478, 125 | 0.0411 | 3,830,328,588 | 0.6925 | 285.47 | 23.32 |
| 12 | 33,218,608 | 0.0060 | 3,863,547,196 | 0.6985 | 300.00 | 0.00 |
| * 13 | 217,173,690 | 0.0393 | 4,080,720,886 | 0.7378 | 300.15 | 14.67 |
| * 14 | 415,539,747 | 0.0751 | 4,496,260,633 | 0.8129 | 299.24 | 19.51 |
| 15 | 236,058,102 | 0.0427 | 4,732,318,735 | 0.8556 | 311.79 | 15.17 |
| 16 | 33,218,608 | 0.0060 | 4,765,537,344 | 0.8616 | 300.00 | 0.00 |
| 17 | 139,934,753 | 0.0253 | 4,905,472,097 | 0.8869 | 301.54 | 10.87 |
| 18 | 121,083,580 | 0.0219 | 5,026,555,677 | 0.9088 | 304.13 | 18.73 |
| * 19 | 127,744,759 | 0.0231 | 5,154,300,436 | 0.9318 | 310.24 | 21.78 |
| * 20 | 161,022,543 | 0.0291 | 5,315,322,979 | 0.9610 | 313.49 | 20.64 |
| 21 | 144,949,794 | 0.0262 | 5,460,272,773 | 0.9872 | 320.19 | 11.79 |
| 22 | 50,512,846 | 0.0091 | 5,510,785,619 | 0.9963 | 327.46 | 9.67 |
| 23 | 18,833,106 | 0.0034 | 5,529,618,725 | 0.9997 | 340.00 | 0.00 |
| Above MaximumKey | | | | | | |
| Key Length | 1,647,776 | 0.0003 | 5,531,266,501 | 1.0000 | 384.99 | 7.79 |
| Total | 5,531,266,501 | 1.0000 | 5,531,266,501 | 1.0000 | 241.60 | 59.18 |

Table F-5.--(Cont.).
Fenal es

| Age Class | Number | Proportion | Cumulative Number | Cumulative Proportion | Mean Length | Std. Dev. of Length |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3 | 1,894,321 | 0.0003 | 1,894,321 | 0.0003 | 94.64 | 4.99 |
| 4 | 17,297,689 | 0.0023 | 19,192,010 | 0.0026 | 113.87 | 6.64 |
| 5 | 381,284,578 | 0.0509 | 400,476,589 | 0.0535 | 150.00 | 22.01 |
| 6 | 92,744,460 | 0.0124 | 493,221,048 | 0.0659 | 178.66 | 25.96 |
| 7 | 1,899,804,828 | 0.2538 | 2,393,025,877 | 0.3197 | 199.06 | 32.55 |
| 8 | 953,096,788 | 0.1273 | 3,346,122,665 | 0.4470 | 226.04 | 43.40 |
| 9 | 753,108,932 | 0.1006 | 4,099,231,597 | 0.5476 | 270.87 | 31.43 |
| 10 | 224,588,611 | 0.0300 | 4,323,820,208 | 0.5776 | 290.70 | 20.59 |
| 11 | 294,023,674 | 0.0393 | 4,617,843,881 | 0.6169 | 297.79 | 37.16 |
| 12 | 429,338,783 | 0.0574 | 5,047,182,664 | 0.6742 | 317.46 | 22.24 |
| 13 | 267,581,444 | 0.0357 | 5,314,764,108 | 0.7100 | 324.49 | 25.95 |
| 14 | 445,633,848 | 0.0595 | 5,760,397,956 | 0.7695 | 324.85 | 22.37 |
| 15 | 335,267,867 | 0.0448 | 6,095,665,823 | 0.8143 | 320.12 | 17.61 |
| 16 | 269,390,157 | 0.0360 | 6,365,055,980 | 0.8503 | 326.97 | 17.80 |
| 17 | 210,796,590 | 0.0282 | 6,575,852,570 | 0.8784 | 333.09 | 21.58 |
| * 18 | 148,833,294 | 0.0199 | 6,724,685,864 | 0.8983 | 331.66 | 24.17 |
| 19 | 193,826,282 | 0.0259 | 6,918,512,146 | 0.9242 | 343.78 | 23.16 |
| 20 | 135,867,833 | 0.0181 | 7,054,379,979 | 0.9424 | 329.09 | 29.44 |
| 21 | 89,228,554 | 0.0119 | 7,143,608,533 | 0.9543 | 338.01 | 7.71 |
| 22 | 236,512,769 | 0.0316 | 7,380,121,302 | 0.9859 | 333.97 | 25.91 |
| 23 | 45, 836,947 | 0.0061 | 7,425,958,249 | 0.9920 | 364.32 | 13.89 |
| 24 | 41,279,740 | 0.0055 | 7,467,237,989 | 0.9975 | 373.41 | 17.46 |
| 25 | 12,386,993 | 0.0017 | 7,479,624,982 | 0.9992 | 360.00 | 0.00 |
| 27 | 5,336,444 | 0.0007 | 7,484,961,426 | 0.9999 | 380.00 | 0.00 |
| * 31 | 896,256 | 0.0001 | 7,485,857,682 | 1.0000 | 423.37 | 4.73 |
| Total | 7,485,857,682 | 1.0000 | 7,485,857,682 | 1.0000 | 262.99 | 68.35 |

Table F-5.--(Cont.).
Unsexed

| Age Class | Number | Proportion | Cumulative Number | Cumulative Proportion | Mean | Std. Dev. of Length |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | 843,893 | 0.0670 | 843,893 | 0.0670 | 70.00 | 0.00 |
| 5 | 248,393 | 0.0197 | 1,092,286 | 0.0867 | 201.19 | 8.08 |
| 6 | 130,797 | 0.0104 | 1,223,083 | 0.0970 | 202.44 | 11.97 |
| 7 | 2,837,317 | 0.2251 | 4,060,400 | 0.3222 | 208.25 | 22.51 |
| 8 | 1,487,956 | 0.1181 | 5,548,357 | 0.4402 | 229.55 | 31.38 |
| 9 | 1,090,348 | 0.0865 | 6,638,704 | 0.5267 | 261.64 | 33.94 |
| 10 | 232,931 | 0.0185 | 6,871,635 | 0.5452 | 291.10 | 16.54 |
| 11 | 421,804 | 0.0335 | 7,293,439 | 0.5787 | 305.02 | 34.02 |
| 12 | 320,316 | 0.0254 | 7,613,755 | 0.6041 | 313.74 | 24.36 |
| 13 | 579,387 | 0.0460 | 8,193,142 | 0.6501 | 332.11 | 30.45 |
| 14 | 859,522 | 0.0682 | 9,052,664 | 0.7182 | 333.30 | 35.54 |
| 15 | 528,424 | 0.0419 | 9,581,089 | 0.7602 | 323.20 | 21.36 |
| 16 | 204,642 | 0.0162 | 9,785,730 | 0.7764 | 326.87 | 26.44 |
| 17 | 242,439 | 0.0192 | 10,028,170 | 0.7956 | 323.48 | 26.58 |
| 18 | 409,786 | 0.0325 | 10,437,956 | 0.8282 | 345.73 | 37.47 |
| 19 | 741,815 | 0.0589 | 11,179,771 | 0.8870 | 356.92 | 26.11 |
| 20 | 403,982 | 0.0321 | 11,583,753 | 0.9191 | 337.64 | 28.65 |
| 21 | 194,004 | 0.0154 | 11,777,757 | 0.9345 | 329.02 | 15.06 |
| 22 | 385,010 | 0.0305 | 12,162,767 | 0.9650 | 353.04 | 25.01 |
| 23 | 301,434 | 0.0239 | 12,464,201 | 0.9889 | 374.61 | 14.32 |
| 24 | 85,818 | 0.0068 | 12,550,019 | 0.9957 | 365.08 | 8.71 |
| 25 | 32,000 | 0.0025 | 12,582,018 | 0.9983 | 360.00 | 0.00 |
| 27 | 21,818 | 0.0017 | 12,603,836 | 1.0000 | 380.00 | 0.00 |
| Total | 12,603,837 | 1.0000 | 12,603,836 | 1.0000 | 265.94 | 82.14 |

Table F-5.-- (Cont.).
Mal es, Femal es, and Unsexed

| Age Class | Number | Proportion | Cumulative Number | Cumulative Proportion | Mean Length | Std. Dev. of Length |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Below Minimum | | | | | | |
| Key Length | 381,613 | 0.0000 | 381,613 | 0.0000 | 80.00 | 0.00 |
| 2 | 843,893 | 0.0001 | 1,225,506 | 0.0001 | 70.00 | 0.00 |
| 3 | 4,290,411 | 0.0003 | 5,515,917 | 0.0004 | 93.76 | 4.84 |
| 4 | 35,270,685 | 0.0027 | 40,786,602 | 0.0031 | 114.30 | 6.38 |
| 5 | 899,309,206 | 0.0690 | 940,095,808 | 0.0722 | 156.80 | 25.68 |
| 6 | 157,203,401 | 0.0121 | 1,097,299,209 | 0.0842 | 181.89 | 26.45 |
| 7 | 3,465,001,202 | 0.2659 | 4,562,300,412 | 0.3501 | 195.73 | 30.96 |
| 8 | 1,702,588,524 | 0.1307 | 6,264,888,935 | 0.4808 | 227.41 | 36.76 |
| 9 | 1,341,296,800 | 0.1029 | 7,606,185,735 | 0.5838 | 265.45 | 31.64 |
| 10 | 327,356,570 | 0.0251 | 7,933,542,305 | 0.6089 | 286.86 | 20.57 |
| 11 | 521,923,602 | 0.0401 | 8,455,465,908 | 0.6489 | 292.42 | 32.45 |
| 12 | 462,877,708 | 0.0355 | 8,918,343,616 | 0.6845 | 316.20 | 21.90 |
| * 13 | 485,334,520 | 0.0372 | 9,403,678,136 | 0.7217 | 313.61 | 24.81 |
| * 14 | 862,033,118 | 0.0662 | 10,265,711,254 | 0.7879 | 312.51 | 24.64 |
| 15 | 571,854,393 | 0.0439 | 10,837,565,647 | 0.8318 | 316.69 | 17.15 |
| 16 | 302,813,407 | 0.0232 | 11,140,379,054 | 0.8550 | 324.01 | 18.80 |
| 17 | 350,973,782 | 0.0269 | 11,491,352,836 | 0.8819 | 320.50 | 23.78 |
| * 18 | 270,326,661 | 0.0207 | 11,761,679,497 | 0.9027 | 319.35 | 25.87 |
| * 19 | 322,312,856 | 0.0247 | 12,083,992,353 | 0.9274 | 330.52 | 27.97 |
| * 20 | 297,294,358 | 0.0228 | 12,381,286,711 | 0.9502 | 320.66 | 26.24 |
| 21 | 234, 372,352 | 0.0180 | 12,615,659,063 | 0.9682 | 326.98 | 13.55 |
| 22 | 287,410,625 | 0.0221 | 12,903,069,688 | 0.9903 | 332.85 | 24.00 |
| 23 | 64,971,487 | 0.0050 | 12,968,041,175 | 0.9953 | 357.32 | 16.12 |
| 24 | 41,365,557 | 0.0032 | 13,009, 406,733 | 0.9984 | 373.39 | 17.45 |
| 25 | 12,418,992 | 0.0010 | 13,021,825,725 | 0.9994 | 360.00 | 0.00 |
| 27 | 5,358,262 | 0.0004 | 13,027,183,988 | 0.9998 | 380.00 | 0.00 |
| * 31 | 896,256 | 0.0001 | 13,028,080,243 | 0.9999 | 423.37 | 4.73 |
| Above Maximum Key Length | 1,647,776 | 0.0001 | 13,029,728,020 | 1.0000 | 384.99 | 7.79 |
| Total | 13,029,728,020 | 1.0000 | 13,029,728,020 | 1.0000 | 253.91 | 65.49 |

Table F-6.-- Popul ation number estimates by age for rock sole from age (years) and length data collected during the 1988 bottomtraw survey.

Mal es
$\left.\begin{array}{crrrrrr}\hline \text { Age Class } & \text { Number } & \text { Proportion } & \begin{array}{r}\text { Cumulative } \\ \text { Number }\end{array} & \begin{array}{c}\text { Cumulative } \\ \text { Proportion }\end{array} & \begin{array}{r}\text { Mean } \\ \text { Length }\end{array} & \begin{array}{r}\text { Std. Dev. } \\ \text { of }\end{array} \\ \text { Bength }\end{array}\right]$

Table F-6.--(Cont.).
Fenal es

| Age Class | Number | Proportion | Cumulative Number | Cumulative Proportion | Mean Length | Std. Dev. of Length |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Below Minimum Key Length | | | | | | |
| | 429,183 | 0.0001 | 429,183 | 0.0001 | 45.00 | 5.00 |
| 2 | 133,444,943 | 0.0252 | 133,874, 127 | 0.0253 | 115.39 | 22.07 |
| 3 | 763,061,169 | 0.1442 | 896,935,296 | 0.1696 | 141.63 | 25.96 |
| 4 | 697,135,546 | 0.1318 | 1,594,070,842 | 0.3013 | 168.18 | 21.02 |
| 5 | 1,499,606,961 | 0.2835 | 3,093,677,803 | 0.5848 | 223.40 | 31.51 |
| 6 | 424,255,811 | 0.0802 | 3,517,933,614 | 0.6650 | 260.19 | 26.72 |
| 7 | 514,255,320 | 0.0972 | 4,032,188,934 | 0.7622 | 302.61 | 24.26 |
| 8 | 444,658,880 | 0.0841 | 4,476,847,814 | 0.8463 | 332.03 | 17.65 |
| 9 | 258,609,846 | 0.0489 | 4,735,457,660 | 0.8952 | 330.42 | 34.41 |
| 10 | 79,254,031 | 0.0150 | 4,814,711,691 | 0.9101 | 352.79 | 30.50 |
| 11 | 157,617,173 | 0.0298 | 4,972,328,864 | 0.9399 | 373.13 | 17.22 |
| 12 | 54,369,813 | 0.0103 | 5,026,698,677 | 0.9502 | 392.85 | 28.42 |
| 13 | 88,964,318 | 0.0168 | 5,115,662,995 | 0.9670 | 374.80 | 27.62 |
| 14 | 63,650,355 | 0.0120 | 5,179,313,350 | 0.9791 | 381.51 | 18.00 |
| 16 | 8,180,038 | 0.0015 | 5,187,493,387 | 0.9806 | 380.00 | 0.00 |
| 17 | 14,054,682 | 0.0027 | 5,201,548,070 | 0.9833 | 399.65 | 14.01 |
| 18 | 52,405,048 | 0.0099 | 5,253,953,118 | 0.9932 | 390.06 | 34.63 |
| 19 | 15,974,187 | 0.0030 | 5,269, 927,305 | 0.9962 | 394.03 | 4.91 |
| 20 | 10,356,369 | 0.0020 | 5,280,283,674 | 0.9981 | 394.71 | 28.52 |
| 23 | 7,713,228 | 0.0015 | 5,287,996,901 | 0.9996 | 415.86 | 4.93 |
| Above Maximum Key Length | | | | | | |
| | 2,076,283 | 0.0004 | 5,290,073,184 | 1.0000 | 468.03 | 11.61 |
| Total | 5,290,073,184 | 1.0000 | 5,290,073,184 | 1.0000 | 242.78 | 82.38 |

Table F-6.--(Cont.).
Unsexed

| Nomber Class | Nroportion | Cumulative
 Number | Cumulative
 Proportion | Mean
 Length | Std. Dev.
 of Length | |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| Below Minimum
 Key Length | $1,209,713$ | 0.0066 | $1,209,713$ | 0.0066 | 60.00 | 0.00 |
| 2 | $68,727,222$ | 0.3745 | $69,936,935$ | 0.3811 | 97.39 | 16.38 |
| 3 | $103,801,070$ | 0.5657 | $173,738,005$ | 0.9468 | 110.68 | 12.20 |
| 4 | $9,522,510$ | 0.0519 | $183,260,516$ | 0.9987 | 134.11 | 6.03 |
| 5 | 244,005 | 0.0013 | $183,504,521$ | 1.0000 | 150.29 | 1.67 |
| | | | | | | |
| Total | $183,504,521$ | 1.0000 | $183,504,521$ | 1.0000 | 106.63 | 16.85 |

Table F-6.--(Cont.).
Mal es, Fenal es, and Unsexed

| Age Class | Number | Proportion | Cumulative Number | Cumulative Proportion | Mean Length | Std. Dev. of Length |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Below Minimum 0,0006 | | | | | | |
| Key Length | 6,403,673 | 0.0006 | 6,403,673 | 0.0006 | 65.55 | 7.32 |
| 2 | 429,076,114 | 0.0413 | 435,479,787 | 0.0419 | 112.21 | 19.59 |
| 3 | 1,411,853,104 | 0.1359 | 1,847,332,891 | 0.1778 | 136.79 | 24.45 |
| 4 | 1,878,374,161 | 0.1808 | 3,725,707,052 | 0.3585 | 170.96 | 21.83 |
| 5 | 2,469,936, 989 | 0.2377 | 6,195,644,041 | 0.5962 | 222.85 | 29.25 |
| 6 | 1,247,348,155 | 0.1200 | 7,442,992,196 | 0.7163 | 256.59 | 26.54 |
| 7 | 1,180,330,782 | 0.1136 | 8,623,322,978 | 0.8299 | 289.60 | 25.68 |
| 8 | 645,758,433 | 0.0621 | 9,269,081,411 | 0.8920 | 322.89 | 20.84 |
| 9 | 393,494, 988 | 0.0379 | 9,662,576,399 | 0.9299 | 324.63 | 29.82 |
| 10 | 84,960,994 | 0.0082 | 9,747,537,394 | 0.9380 | 351.94 | 29.63 |
| 11 | 209,407,669 | 0.0202 | 9,956,945,063 | 0.9582 | 357.46 | 31.89 |
| 12 | 113,418,855 | 0.0109 | 10,070,363,918 | 0.9691 | 342.14 | 52.61 |
| 13 | 88,964,318 | 0.0086 | 10,159,328,235 | 0.9777 | 374.80 | 27.62 |
| 14 | 73,935,789 | 0.0071 | 10,233,264,024 | 0.9848 | 376.35 | 21.14 |
| 16 | 8,180,038 | 0.0008 | 10,241,444,062 | 0.9856 | 380.00 | 0.00 |
| 17 | 14,054,682 | 0.0014 | 10,255,498,745 | 0.9869 | 399.65 | 14.01 |
| 18 | 75,093,599 | 0.0072 | 10,330,592,344 | 0.9941 | 372.67 | 39.26 |
| 19 | 29,834,151 | 0.0029 | 10,360,426,494 | 0.9970 | 359.64 | 37.10 |
| 20 | 10,356,369 | 0.0010 | 10,370,782,863 | 0.9980 | 394.71 | 28.52 |
| 23 | 7,713,228 | 0.0007 | 10,378, 496,091 | 0.9988 | 415.86 | 4.93 |
| Above Maximum Key Length | 12,923,761 | 0.0012 | 10,391,419,852 | 1.0000 | 393.10 | 42.29 |
| Total | 10,391,419,852 | 1.0000 | 10,391,419,852 | 1.0000 | 228.64 | 75.65 |

[^0]: ${ }^{\text {a }}$ Net width measured for each tow or calculated from a functional relationship with scope if no measurement exists.
 ${ }^{\text {b }}$ Based on net design considerations only.
 ${ }^{\text {c}}$ Trawl has no intermediate.
 ${ }^{d}$ Codend consists of three layers of $100-\mathrm{mm}$ mesh.

[^1]: 'Reference to trade names does not imply endorsement by the National Marine Fisheries Service, NOAA.

[^2]: Proportion of total estimated biomass, fish and invertebrates combined, for the total survey area (Total estimated biomass $=26,069,413$ t).

[^3]: - Depths sampled on the slope were 200-800 m in 1988 and 200-1,000 in earlier years.
 - Included in shelf estimate.

 Note: Differences in sums of estimates and totals are due to rounding; Estimates for the north shelf area are not included here.

[^4]: Popul ation number estimates for 1982 have been revised fromthose given in tables of this ki nd in previ ous trienni al reports (Bakkal a et al . 1985, Wal ters et al. 1988) so that they are derived from the bottom traw survey area stratification system used in the anal yses of the 1985 and 1988 age data.

[^5]: *Biomass estimates in this table exceed those in Table 12 because estimates from the north shelf are included here but not in Table 12. In addition, in some years the totals are not equal to those in Table 12 because different strata were used to estimate the midwater biomass.

[^6]: i ndi cates no fishing or no sample.
 ${ }^{\text {b }}$ Traw sampl es were not taken in these areas. Biol ogical information is based on cl osest samples taken in adj acent areas.
 Note: Differences in total s and sums of bi onass and popul ation numbers by subarea are due to rounding.

[^7]: Figure $6 \overline{5} .-$ Distribution and relative abundance of longhead dab in the eastern Bering Sea as shown by the 1988 U.S.-Japan bottom trawl survey.

[^8]: Figure 78.--Distribution and relative abundance of butterfly sculpin in the eastern Bering Sea as shown by the 1988 U.S. -Japan bottom trawl survey.

[^9]: Figure 79.--Distribution and relative abundance of yellow Irish lords in the eastern Bering Sea as shown by the 1988 U.S. -Japan bottom trawl survey.

[^10]: Figure 85.--Distribution and relative abundance of marbled eelpouts in the eastern Bering Sea as shown by the 1988 U.S.-Japan bottom trawl survey.

[^11]: Figure 87.--Distribution and relative abundance of shortfin eelpout in the eastern Bering Sea as shown by the 1988 U.S.-Japan bottom trawl survey.

[^12]: Figure 90.--Distribution and relative abundance of snailfishes in the eastern Bering Sea as shown by the 1988 U.S. -Japan bottom trawl survey.

[^13]: Figure 93. --Distribution and relative abundance of shrimps in the eastern Bering Sea as shown by the 1988 U.S. -Japan bottom trawl survey.

[^14]: Figure 94.--Distribution and relative abundance of octopuses in the eastern Bering Sea as shown by the 1988 U.S. -Japan bottom trawl survey.

[^15]: Figure A-4b. --Schematic diagram of the rigging for the headrope, footrope, and breastlines (above\} and the bridles (below) for the Northern fold trawl used during the midwater survey on the Pelagos.

[^16]: ${ }^{7}$ Hauls with a stratum desi gnat or of -9 were not used in the anal ysis due to bad performance, bei ng outsi de the standard area, or part of another experiment.
 ${ }^{\text {b }}$ A val ue of -9.0 indicates no temperature was taken.

[^17]: ${ }^{\text {a }}$ A value of -9.0 indicates no temperature was taken.
 ${ }^{b}$ This haul was not within an established strata.

[^18]: 'Mean length by age are not presented in this table because of ageing problems discussed in the methods section of this report.

